171 research outputs found

    Triphenylarsonium-functionalised gold nanoparticles: potential nanocarriers for intracellular therapeutics.

    Get PDF
    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.Two new triphenylarsonium alkylthiolate precursors, a thiosulfate zwitterion and a thioacetate salt, have been structurally characterised and their cytotoxicity evaluated against PC3 cells. The arsonium compounds have been used to prepare gold nanoparticles decorated with triphenylarsonium groups.Sheffield Hallam University and Indian Institute of Science (NL)

    Biological and structural studies of phosphonium 'masked thiolate' compounds

    Get PDF
    The ability of phosphonium cations to act as intracellular transport vectors is well-established. Phosphonioalkylthiosulfate zwitterions, and (omega)-thioacetylalkylphosphonium salts, which act as 'masked thiolate' ligands, are useful precursors for the formation of phosphonium-functionalised gold nanoparticles, enabling the nanoparticles to be transported into cells for diagnostic and therapeutic purposes. In this study we have completed cytotoxicity studies of (omega)-thioacetylpropylphosphonium salts derived from triphenylphosphine and tri(4-fluorophenyl)phosphine, which show that the compounds are only toxic towards PC3 prostate cancer cells at high concentrations and at prolonged incubation periods and display IC50 values of 67uM and 252uM respectively, significantly higher than those of other phosphonium salts. MALDI-TOF-MS has been used to investigate the uptake of the compounds by PC3 cells and to quantify detectable levels of the compounds inside the cells. The structures of (omega)-thioacetylpropyl(tri-4-fluorophenyl) phosphonium bromide and the corresponding tri(4-fluorophenyl)phosphonio-propylthiosulfate zwitterion have been investigated by single crystal X-ray crystallography. The results show that molecules of the zwitterion are held together through an extensive array of electrostatic and non-covalent interactions. The unit cell of (omega)-thioacetylpropyl(tri-4-fluorophenyl)phosphonium bromide contains eight cations together with eight bromide anions and two waters of crystallisation, all held together through a complex network of hydrogen bonds. The differences in the molecular packing of the two compounds may account for the lower solubility of the zwitterion in aqueous solutions, compared with that of the phosphonium salt

    Antimicrobial Nanoplexes meet Model Bacterial Membranes: the key role of Cardiolipin

    Get PDF
    Antimicrobial resistance to traditional antibiotics is a crucial challenge of medical research. Oligonucleotide therapeutics, such as antisense or Transcription Factor Decoys (TFDs), have the potential to circumvent current resistance mechanisms by acting on novel targets. However, their full translation into clinical application requires efficient delivery strategies and fundamental comprehension of their interaction with target bacterial cells. To address these points, we employed a novel cationic bolaamphiphile that binds TFDs with high affinity to form self-assembled complexes (nanoplexes). Confocal microscopy revealed that nanoplexes efficiently transfect bacterial cells, consistently with biological efficacy on animal models. To understand the factors affecting the delivery process, liposomes with varying compositions, taken as model synthetic bilayers, were challenged with nanoplexes and investigated with Scattering and Fluorescence techniques. Thanks to the combination of results on bacteria and synthetic membrane models we demonstrate for the first time that the prokaryotic-enriched anionic lipid Cardiolipin (CL) plays a key-role in the TFDs delivery to bacteria. Moreover, we can hypothesize an overall TFD delivery mechanism, where bacterial membrane reorganization with permeability increase and release of the TFD from the nanoplexes are the main factors. These results will be of great benefit to boost the development of oligonucleotides-based antimicrobials of superior efficacy

    Intrinsic Mitochondrial Membrane Potential and Associated Tumor Phenotype Are Independent of MUC1 Over-Expression

    Get PDF
    We have established previously that minor subpopulations of cells with stable differences in their intrinsic mitochondrial membrane potential (Δψm) exist within populations of mammary and colonic carcinoma cells and that these differences in Δψm are linked to tumorigenic phenotypes consistent with increased probability of participating in tumor progression. However, the mechanism(s) involved in generating and maintaining stable differences in intrinsic Δψm and how they are linked to phenotype are unclear. Because the mucin 1 (MUC1) oncoprotein is over-expressed in many cancers, with the cytoplasmic C-terminal fragment (MUC1 C-ter) and its integration into the outer mitochondrial membrane linked to tumorigenic phenotypes similar to those of cells with elevated intrinsic Δψm, we investigated whether endogenous differences in MUC1 levels were linked to stable differences in intrinsic Δψm and/or to the tumor phenotypes associated with the intrinsic Δψm. We report that levels of MUC1 are significantly higher in subpopulations of cells with elevated intrinsic Δψm derived from both mammary and colonic carcinoma cell lines. However, using siRNA we found that down-regulation of MUC1 failed to significantly affect either the intrinsic Δψm or the tumor phenotypes associated with increased intrinsic Δψm. Moreover, whereas pharmacologically mediated disruption of the Δψm was accompanied by attenuation of tumor phenotype, it had no impact on MUC1 levels. Therefore, while MUC1 over-expression is associated with subpopulations of cells with elevated intrinsic Δψm, it is not directly linked to the generation or maintenance of stable alterations in intrinsic Δψm, or to intrinsic Δψm associated tumor phenotypes. Since the Δψm is the focus of chemotherapeutic strategies, these data have important clinical implications in regard to effectively targeting those cells within a tumor cell population that exhibit stable elevations in intrinsic Δψm and are most likely to contribute to tumor progression

    Photocytotoxicity of mTHPC (Temoporfin) Loaded Polymeric Micelles Mediated by Lipase Catalyzed Degradation

    Get PDF
    Purpose. To study the in vitro photocytotoxicity and cellular uptake of biodegradable polymeric micelles loaded with the photosensitizer mTHPC, including the effect of lipase-catalyzed micelle degradation. Methods. Micelles of mPEG750-b-oligo(ɛ-caprolactone)5 (mPEG750-b-OCL5) with a hydroxyl (OH), benzoyl (Bz) or naphthoyl (Np) end group were formed and loaded with mTHPC by the film hydration method. The cellular uptake of the loaded micelles, and their photocytotoxicity on human neck squamous carcinoma cells in the absence and presence of lipase were compared with free and liposomal mTHPC (Fospeg ®). Results. Micelles composed of mPEG750-b-OCL5 with benzoyl and naphtoyl end groups had the highest loading capacity up to 30 % (w/w), likely due to π–π interactions between the aromatic end group and the photosensitizer. MTHPC-loaded benzoylated micelles (0.5 mg/mL polymer) did not display photocytotoxicity or any mTHPC-uptake by the cells, in contrast to free and liposomal mTHPC. After dilution of the micelles below the critical aggregation concentration (CAC), or after micelle degradation by lipase, photocytotoxicity and cellular uptake of mTHPC were restored. Conclusion. The high loading capacity of the micelles, the high stability of mTHPC-loaded micelles above the CAC, and the lipase-induced release of the photosensitizer makes these micelles very promising carriers for photodynamic therapy in vivo. KEY WORDS: drug release; enzymatic degradation; meta-tetra(hydroxyphenyl)chlorin (mTHPC); photodynamic therapy (PDT); polymeric micelles

    Berberine, a popular dietary supplement for human and animal health: Quantitative research literature analysis a review

    Get PDF
    Berberine is an alkaloid with a wide range of reported beneficial health effects. The current work provides an extensive literature analysis on berberine. Bibliometric data were identified by means of the search string TOPIC=(berberin* OR umbellatine*), which yielded 5,547 publications indexed in the Web of Science Core Collection electronic database. The VOSviewer software generated bubble maps to visualize semantic terms with citation results. The ratio of original articles to reviews was 13.6:1. The literature has been growing more quickly since the 2010s. Major contributing countries were China, the United States, India, Japan, and South Korea. Most of the publications appeared in journals specialized in pharmacology pharmacy, biochemistry molecular biology, chemistry, and plant science. Some of the frequently mentioned chemicals/chemical classes were alkaloid, palmatine, jatrorrhizine, coptisine, isoquinoline, and sanguinarine. The prevalent medical conditions under investigation included Alzheimers disease, cancer, diabetes, and obesity.Acknowledge the support by the Polish KNOW (LeadingNational Research Centre) Scientific Consortium “Healthy Animal-Safe Food,” decision of Ministry of Science and Higher Education No. 05-1/KNOW2/2015 and the European Union under the European Regional Development Fund (Homing/2017-4/41). Antoni Sureda has been supported by the Institute of Health Carlos III (Project CIBEROBN CB12/03/30038). Joanna Feder-Kubis was financed by the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wrocław University of Science and Technology.info:eu-repo/semantics/publishedVersio

    HESEB The Helmholtz state of the art Soft X Ray Undulator beamline at SESAME

    Get PDF
    SESAME and a consortium of five Helmholtz Centers are designing and installing a state of the art soft X Ray undulator beamline at the SESAME light source in Amman, Jordan. Funding is provided by the Helmholtz Association over a four year project cycle that started in January 2019. This is an interim report covering the first 36 months of the project where the construction and installation has been almost completed and commissioning and characterization of the beamline is about to start. Additionally, seminars, workshops, and a training program are part of the project aimed at establishing a broad user communit

    Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines

    Get PDF
    Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore