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Abstract. We provide an overview of the concerns, current practice, and limita-

tions for capturing, reconstructing, and representing the real world visually within

virtual reality. Given that our goals are to capture, transmit, and depict com-

plex real-world phenomena to humans, these challenges cover the opto-electro-

mechancial, computational, informational, and perceptual fields. Practically pro-

ducing a system for real-world VR capture requires navigating a complex design

space and pushing the state of the art in each of these areas. As such, we outline

several promising directions for future work to improve the quality and flexibility

of real-world VR capture systems.

Keywords: Cameras · Reconstruction · Representation · Image-Based Rendering
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1 Introduction

One of the high-level goals of virtual reality is to reproduce how the real world looks

in a way which is indistinguishable from reality. Achieving this arguably-quixotic goal

requires us to solve significant problems across capture, reconstruction, and represen-

tation, and raises many questions: “Which camera system should we use to sample

enough of the environment for our application?”; “How should we model the world

and which algorithm should we use to recover these models?”; “How should we store

the data for easy compression and transmission?”, and “How can we achieve simple

and high-quality rendering for human viewing?”. Solving any one of these problems is

a challenge, and this challenge is exacerbated by the interplay between the questions.

This provides us with a complex design space to navigate if we wish to build practical

and high-quality systems for real-world VR reproduction.
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Yet, significant progress has been made over the past 5 years in our ability to cap-

ture and display the visual properties of the real world, driven most recently by the

need to provide content for low-cost VR headsets. Many compelling applications are

now within reach: the broad area of telepresence, e.g., for VR communications; for re-

mote operation, e.g., medical robotics; for cultural heritage and virtual tourism; and for

storytelling via documentaries, movies, and games. We wish the tools for these applica-

tions to be simple in all stages of authorship, and for the applications to be comfortable

and easy to use, requiring only novice intuition (the “can my grandparents use this?”

test).

So, broadly, what issues concern us when we wish to capture the world in a visually

indistinguishably way?

Objects, Scenes, and Subjects. Typically what we wish to capture helps determine how

we should capture it for later analysis or virtual reality presentation. Capturing a single

object in a studio has long been accomplished with so-called outside-in multi-camera

systems: cameras are placed to encircle or ensphere an object and allow its multi-view

capture. Generally, the more cameras we have, the higher the quality of reproduction.

Further, such controlled environment conditions allow higher-quality capture than un-

constrained settings, e.g., outdoors.

To capture scenes, we use an inside-out camera system in which multiple cameras

face the world. These may be arranged into a circle or sphere to capture 360° for im-

mersive VR, though planar configurations to densely capture narrower fields of view are

also common (often called light field cameras). The distance between the cameras—or

baseline—determines for how near and how far away we can reconstruct the geometry

of the scene. Further, VR capture typically predicates that the camera and its parapher-

nalia are not visible in the scene, which informs the capture scenario design.

One special class of object exists for which much specific work has been directed:

people. As social creatures, we wish to represent ourselves realistically, especially as

many potential applications are driven by social interaction. Often, these methods use

databases of human shape and appearance to create efficient and high-quality represen-

tations.

Photons, Rays, and Waves. Given an intended capture scenario, we next wish to maxi-

mize our capture fidelity. Our lens systems play a significant part in overall quality, and

typically the camera configuration and lens systems are co-designed. At the camera sen-

sor, output fidelity spans three major axes: spatial resolution, temporal resolution, and

spectral resolution (i.e., color). Each of these must be tempered by our ability to store,

process, and eventually transmit these data. Given that our output is to a human ob-

server, then there is an eventual limit beyond which no additional captured information

is perceived (which, arguably, we are fast approaching [78]).

Geometry and Appearance. The raw output from a multi-camera system must be recon-

structed into a representation which is comfortable and easy to view. For video, existing

real-world capture for VR is typically monoscopic and 360°, which requires stitching

multiple camera images via a spherical proxy geometry. Current state-of-the-art systems

produce stereoscopic 360° images, which have complex disparity challenges. Both of
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3DoF: rotation only 6DoF: rotation + translation

Fig. 1: VR systems provide either three or six degrees of freedom (DoF) for head mo-

tion. Left: ‘3DoF’ lets a user look around the virtual world from a fixed point. Right:

‘6DoF’ lets the user move in the virtual world like in the real world.

these are so-called ‘3DoF’ or three-degrees-of-freedom representations describing the

three rotation angles available within a VR headset. This is insufficient to represent hu-

man motion within the headset as humans can also translate along three axes in free

space (Figure 1).

As such, one near-term goal of VR production is ‘6DoF’, which allows realistic

response to human head and body motions and solves the disparity challenges of the

stereo 360° format by allowing stereo rendering in any viewing direction. The range of

6DoF movement available is a key concern: the larger the ‘headbox’ required, the larger

the camera baseline must be to accommodate the eventual range of user motion. Sparser

sampling of the scene requires us to reconstruct more sophisticated scene models to ‘fill

in the gaps’ during rendering. Thus, depth and geometry reconstruction become critical

pieces of the processing, transmission, and render systems. Likewise, complex scene

object which display view-dependent appearance effects, such as shiny or translucent

objects, make this reconstruction and depiction problem harder.

Many representations exist, including simple proxy geometry, depth, layered im-

ages, voxels, point clouds, signed distance fields, and textured 3D geometry. Each has

a complementary rendering system, e.g., image-based rendering or ray casting. Each

also has different compression and storage methods for efficient transmission. Further,

state-of-the-art ‘neural rendering’ learned representations now also exist, with a ‘neural’

version of each classic representation.

Humans as Creators. Producing VR content requires the ability to edit the captured

material. These operations could be color matching between cameras, editing scene

content to remove unwanted artifacts, or editing the perceptual result such as adjust-

ing disparity for comfort. As such, any reconstructed representation must be malleable

to the editing tasks. More sophisticated productions may wish to edit content by inte-

grating captured and purely virtual content, which requires a more sophisticated recon-
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struction such as to represent real-world occlusions and integrate object lighting with

illumination capture.

Humans as Consumers, Visual Expectation, and Avoiding the Visual Gap. Human per-

ception has limitations which may be exploited. Many compelling applications—and

even many users—may not need flawless reproduction, and the positive impact of, say,

stronger personal connection through immersive telecommunications is likely to out-

weigh any failures in subtle appearance reproduction. Further, ‘indistinguishable from

reality’ is different from ‘photorealistic’: we typically know when we are looking at

camera-captured media, yet, this is sufficient for much of our storytelling. Likewise,

‘perceptually realistic’ is different from ‘indistinguishable from reality’ as it lightens

the burden on scrutiny. Some ‘non-photorealistic’ depictions may help us avoid entirely

complex challenges of fidelity and representation.

That said, VR is still a new and hopeful technology, and current limitations which

are easy to overlook at this nascent stage—especially to technologists developing these

techniques—may be more significant barriers to adoption. VR sickness is one such

issue; here, 6DoF reconstruction and rendering holds promise to significantly reduce its

effects and make VR more accessible.

2 Current Practice

Capturing the real world for rendering in virtual reality [59,85] is fundamentally

about creating novel views of a scene given only a sparsely sampled set of im-

ages [7,13,21,30,55,92]. These techniques are closely related to 3D reconstruction [16]

and image-based rendering (IBR) [20,93], and have many important applications in VR,

including telepresence and digitizing avatars; capturing faces, hands, or whole body per-

formances; and capturing cinematic experiences with dedicated VR camera rigs. Novel-

view synthesis and image-based rendering are active and long-running fields of research

that have produced a large variety of techniques and systems working towards the goal

of capturing the real world in all its visual fidelity. Many of the proposed systems share

a similar high-level structure, which is embodied by the VR Capture Pipeline:

Capture Representation RenderingReconstruction Compression

In this section, we will look at each stage of this pipeline and provide an overview of

the range of VR capture techniques and their trade-offs. For any particular approach

or system, the most important design choice is the data representation to be used, as

this constrains many of the other pipeline stages. In particular, the choice constrains

reconstruction, compression, and rendering.

2.1 Capture

Most virtual reality capture approaches rely on one or more color cameras to capture

the visual appearance and dynamics of a scene (see examples in Figure 2). Sometimes,

special cameras are used, such as RGBD cameras which capture depth maps in addition

to color footage, or special attachments like mirrors.
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Fig. 2: Visual overview of capture approaches: (a) one static (RGBD) camera, (b) one

moving camera, (c) one moving RGBD camera, and (d) a multi-camera capture with 16

cameras. Figures reproduced from: (a) Kopf et al. 2019 [49], (b) Luo et al. 2018 [58],

(c) Hedman et al. 2018 [33], and (d) Parra Pozo et al. 2019 [78].

One Static Camera can capture a partial view of a larger scene, typically with perspec-

tive lenses. The content captured in this fashion can still be compelling, as demonstrated

by Facebook’s 3D photos [49], which are captured by dual-lens cameras on commod-

ity mobile phones to provide depth in addition to color. However, wider views require

wider camera optics, such as fisheye lenses (> 90°) or catadioptic systems [1] for om-

nidirectional video.

One Moving Camera can capture more of a static scene by sweeping over it across

time. Traditional panorama stitching approaches [6,101] assume a camera that rotates

around its optical center, so that it captures all light rays converging at a single point

in space—the center of the panorama. By translating the camera in space, even more

light rays can be captured, for instance for omnidirectional stereo [5,79,86], layered

depth panoramas [123], or 3D photography [32]. More elaborate setups have a camera

moving along the surface of a plane or sphere to capture different portions of a light

field [58,63,75].
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One Moving RGBD Camera makes it easier to reconstruct the geometry of the scene

from the captured depth maps. A pioneer in this category is the KinectFusion approach

[69], which reconstructs a global truncated signed distance field (TSDF) representa-

tion of a scene from registered input depth maps alone. There are many more recent

variants that improve on the scale and robustness of this kind of scene reconstruction

[17,71,114]. Alternatively, Instant 3D Photography [33] aligns multiple RGBD images

captured with a dual-lens camera into a consistent textured 3D panoramic surface.

Multi-Camera Rigs are required for video capture and to capture multiple viewing di-

rections simultaneously. Consumer 360° cameras are now commercially available as

commodity devices that stitch two or more video streams into a single 360° video

[53,81,111]. Stereo cameras capture two viewpoints side by side, and their baseline

can be magnified in post production [124]. Multiple viewpoints can also be interpolated

and manipulated in a post-process after video capture [56]. A ring of video cameras

captures sufficient information for compelling omnidirectional stereo video [3,9,87],

while a rotating camera rig can even capture live omnidirectional stereo video [48]. The

Facebook Manifold camera [78] has 16 cinema cameras in a large sphere configuration

to evenly capture views in all directions. Light fields [25,30,55] are based on a dense

sampling of viewpoints, which requires many co-located cameras. A different camera

setup distributes cameras on a dome or around a capture volume, for example to capture

objects and people in a light stage [19] or as volumetric video [15].

2.2 Reconstruction

Reconstruction interprets and combines the information contained in the captured im-

agery to create a unified model. The first step is often camera calibration and structure

from motion, i.e., characterizing the imaging devices used, including their lens distor-

tion, and determining which views of a scene they captured. Multiple structure-from-

motion implementations are publicly available, including Bundler [96], VisualSfM

[117], AliceVision [41,65], MVE [27], Theia [99] and COLMAP [88], with the lat-

ter currently enjoying the widest use. However, general-purpose structure-from-motion

tools do not perform well for the kind of inside-out capture commonly used for environ-

ment capture [5,32]. This has led to the development of specifically tailored structure-

from-motion solutions that assume camera motion on a spherical surface [100,109],

which is a good match for handheld [5,32,86] or spherical [58,75] capture approaches.

One of the outputs of structure from motion is also a sparse 3D point cloud of feature

points in the scene, which can be useful for image alignment [53] or view warping [36].

Once the viewpoints are reconstructed, the next step is generally to combine all the

captured information into a single model of the scene. In classical panorama stitching,

this is achieved by aligning and blending the individual input views on a spherical or

cylindrical image surface [6,101]. While still panoramas can hide alignment artifact to

some degree using clever stitching or blending approaches [32,121,122], this becomes

much harder for panoramic videos, as the visual content, and hence any artifacts, keep

changing over time. To address this, the stitching needs to vary over time in accordance

with the scene [53,81,111]. To achieve more complex projections, such as the multi-

perspective omnidirectional stereo (ODS) projection [39,79], requires dense correspon-
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dence between input views so that intermediate views can be synthesized [3,9,86,87].

Most approaches use optical flow for this purpose, as it provides useful flexibility in

case of calibration errors or scene motion.

The reconstruction of 3D geometry goes beyond the purely image-based approaches

discussed before by recovering the 3D structure of a scene or object. Most approaches

start by estimating per-view depth maps using multi-view stereo (MVS) techniques

[28,37,89,90] or deep learning [33,72,91], unless depth maps are directly available from

RGBD cameras. In theory, these per-view depth maps can be integrated into a global ge-

ometry model of the scene [12,32,91] if the camera poses and depth maps are estimated

sufficiently accurately. Approaches such as KinectFusion [69] and BundleFusion [17]

integrate noisy depth maps over time to improve the accuracy of the surface reconstruc-

tion. Having a large number of views also leads to a cleaner geometry reconstruction

[15]. Hedman et al. [33] introduce a locally varying depth map alignment step to in-

tegrate differently normalized depth maps from mobile phones or neural networks into

a globally consistent depth map. However, because of calibration and depth estima-

tion errors, better view synthesis results can often be obtained with per-view geometry

[11,35,75] that is smoothly blended across the synthesized novel view.

2.3 Representation

Over the years, various approaches have been proposed for representing captured scenes

or objects. View synthesis techniques can be classified by how heavily they rely on

the input image data vs. proxy geometry in their representation. For example, light

field rendering [55] represents one extreme that does not use any geometry at all, but

that requires densely sampled input views, whereas conventional 3D rendering with

polygon meshes and textures is the other extreme in requiring detailed geometry but

few input images (i.e., the textures) for the rendering. Geometric representations of a

scene can be either modeled or estimated from the input images, for example using

classical 3D computer vision pipelines [31,102]. To provide an overview, Shum et al.

[92,93] organized representations along a continuum according to how much geometry

they use:

– No geometry refers to purely image-based approaches, such as panoramas or 360°

video.

– Implicit geometry comprises approaches using posed images and/or relying on 2D

image correspondences, such as optical flow.

– And explicit geometry includes textured meshes or point clouds with actual 3D

geometry.

Figure 3 contains an updated version of Shum et al.’s continuum of representations

and Figure 4 illustrates examples from across this continuum.

There is no universally best representation—all have their advantages and disad-

vantages and provide different trade-offs. There is also often no hard boundary between

representations, so there is some overlap; hybrids that combine multiple representations

are also possible. In the limit, i.e., with infinite resolution, the representations are theo-

retically interchangeable. However, any conversion always requires resampling, which
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No geometry Implicit geometry Explicit geometry

Images and

panoramas

Light

fields

Omnidirectional

stereo (ODS)

Posed

images

Layered

representations

Point

clouds

Textured

geometry

Voxel

grids

Fig. 3: Updated continuum of image-based rendering representations, inspired by Shum

et al. [92,93]. Please see the discussion in Section 2.3 for details.

is usually a lossy process that reduces overall fidelity. There are usually also practical

limits: for example, the physical size of cameras which limits the maximum camera

density that is achievable in practice.

Images and Panoramas provide the most basic snapshot of what a scene or object

looked like. They represent a photographic likeness that captures visual appearance of

a scene or object from a single point of view with a fixed field of view. Panoramas

[6,101] and 360° videos [53,81] capture a wide or even complete field of view. Images

and panoramas enjoy great popularity as they are easy to capture with modern mobile

phones and consumer cameras, and are straightforward to share. However, their main

limitation is that they only provide information for a single point of view (i.e., only

3DoF) and no depth perception, and thus do not support any translational change of

viewpoint.

Light Fields represent a dense spatio-angular sampling of a scene [55], generally us-

ing a regular 2D grid of camera viewpoints. More general camera configurations are

supported by the Lumigraph [30], a closely related variant of light fields. As the com-

prehensive coverage of an object in a scene is challenging to obtain in practice, Davis et

al. [18] proposed a guidance approach that helps users in capturing missing viewpoints.

Videos captured with a moving camera can also be considered to be a densely sampled

light field along the camera path, which can be exploited for particularly accurate scene

reconstruction [45,120].

Omnidirectional Stereo (ODS) is a multi-perspective, circular projection [39,79] that

has become a popular medium for stereoscopic and 360° VR photos and videos

[3,9,86,87]. ODS encodes two panoramic views—one for the left eye and one for the

right eye. This has the advantage that there is binocular disparity—and hence the per-

ception of depth—in all viewing directions along the equator, though distortion exists

away from the equator (Figure 5). The format is an excellent fit for existing video pro-

cessing, compression, and transmission pipelines, as both views are encoded in a single

top-bottom configuration.

Posed Images have known camera geometry (camera position and orientation) in ad-

dition to the image data. This enables scene reconstruction in the form of point clouds

using multi-view stereo. Even sparse point clouds are sufficient for providing a com-

pelling overview of community photo collections as demonstrated by Snavely et al.’s
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Fig. 4: Visual examples that illustrate the range of image-based rendering representa-

tions: (a) panoramas [81], (b) light fields [120], (c) omnidirectional stereo, (d) posed

images [96], (e) layered representations such as multiplane images [63], (f) voxel grids

with deep features [70], (g) textured geometry [33], and (h) point clouds [72].

PhotoTourism work [96]. Novel views can be interpolated from existing ones by estab-

lishing correspondences between adjacent viewpoints. In practice, optical flow is often

used for flow-based blending [3,5,58,86,87], which significantly reduces blurry ghost-

ing artifacts and produces results with high visual fidelity.

Layered Representations consist of multiple semi-transparent layers that encapsulate

the appearance of a scene or object without any explicit geometry. The underlying core

idea goes back to Disney’s multiplane camera (1937), in which multiple transparent cel

sheets are positioned at different depths from the camera. This allows each cel sheet
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Fig. 5: Omnidirectional stereo introduces vertical distortion as cameras lie on a larger

circle than the viewing circle. The red faces, as seen by the camera, appear vertically

stretched (blue faces) when rendered using parallel rays for a viewpoint behind the

camera. Figure adapted from Anderson et al. [3].

to be moved independently and creates the effect of motion parallax over time. Early

approaches by Wetzstein et al. computed layered representations using custom-tailored

optimization frameworks [112,113]. Recently, advances in deep learning have revived

and accelerated progress in the reconstruction of so-called multiplane images (MPIs)

[25,63,98,124].

Voxel Grids can represent regularly sampled occupancy (‘filled or empty’), color, opac-

ity, or distance (e.g., truncated signed distance fields [69]) to enable novel-view syn-

thesis. Managing memory as a resource with voxel grids is critical given their n3 na-

ture, and octree-based voxel grids are possible. New voxel grids storing deep features

[57,70,94,107] aim to enable novel-view synthesis at a higher quality but with a lower

memory use. We discuss this emerging work on neural scene representations in more

detail in Section 3.

Textured Geometry makes it easy to render novel views in real time with existing 3D

graphics pipelines, even on mobile devices. Mesh geometry is particularly good at mod-

eling hard occlusion boundaries, but it needs to be reconstructed accurately from usually

noisy depth maps. For the highest quality depth maps, many observations from differ-

ent viewpoints need to be combined, for example for volumetric video [15] or Google’s

light fields [75]. One consumer-facing example are Facebook’s 3D Photos [49], which

are based on an image and lower-resolution depth map from an off-the-shelf mobile

phone. The final 3D photo can be looked at from different directions by tilting the

phone. Several approaches separate foreground and background objects in a scene into

multiple textured layers [32,33,91,123], to preserve clean occlusion boundaries. This

generally requires some kind of inpainting to fill the areas behind foreground objects.

In the real world, the appearance of objects also often depends on the viewing direction,

e.g., when objects are shiny. This effect can be modeled using surface light fields [115]

or view-dependent blending [34]. In general, modeling and editing favors geometric

approaches, as there are better software tools available for textured meshes than other

representations.
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Point Clouds represent a scene as an unordered collection of points, which may or may

not have colors and/or surface normals. They are readily obtained from structure-from-

motion and multi-view stereo tools, RGBD images [72], or Lidar scans of a scenes.

However, they are inherently sparse, tend to be noisy and non-uniformly distributed

in reconstruction space (rather than camera space), and contain gaps that make them

impractical for rendering high-quality novel views (although this is slowly changing

thanks to neural re-rendering [62]). Nevertheless, they are often a useful intermediate

representation or debugging tool.

2.4 Compression

Raw scene representations can become very large (hundreds of gigabytes). This can

make them difficult to store given limited space on disk or in memory, to transmit over

networks in a reasonable time, or even to render them in real time. Thus, compression

and decompression are indispensable for practical scene capture and rendering systems.

The light fields introduced by Levoy and Hanrahan [55] in 1996 were up to 1.6 GB

in size. This would easily fill a large hard drive at the time, and would never fit in mem-

ory. However, light fields are highly redundant within images and between images, so

they are highly compressible. Levoy and Hanrahan designed a custom light-field com-

pression scheme that combines vector quantization of 2D or 4D tiles (24:1 compression)

with gzip entropy encoding (another 5:1 compression) for a total compression of 120:1.

This scheme allowed fast random-access decompression entirely in software, so that

real-time rendering became feasible.

Recently, image compression techniques such as JPEG have become computation-

ally affordable, even in real-time applications. Existing video codecs, such as h.264

and h.265, can also often be used directly for compressing video-based representations,

such as 360° video [53,81] or omnidirectional stereo videos [3,87].

Collet et al. [15] encode their volumetric free-viewpoint videos in a standard

MPEG-DASH file. Thanks to mesh tracking, their geometry has a temporally consistent

parameterization. Therefore, the resulting texture atlases are unwrapped consistently

and can be compressed effectively using the standard h.264 video codec. The mesh

geometry is encoded as a custom unit inside the video stream and compressed using

linear motion prediction, 16-bit quantization of vertex positions and UV coordinates,

and Golomb coding.

Google’s panoramic light fields require 4–6 GB of image data each [75] and so also

need compression. As for the original light fields paper [55], fast random access is re-

quired for rendering novel views of the light field. Overbeck et al. [75] build on the

open-source VP9 codec and encode most light field images relative to a sparse set of

reference views, which are like key frames in standard videos. In practice, they decode

all reference images when loading the light field from disk and keep them in memory.

They also contribute an extension to VP9 that enables random access to individual im-

age tiles. This allows their system to decode any tile from any other image immediately.

Most light fields can hence be compressed at high quality by 40×–200×.
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2.5 Rendering

The final step of the VR capture pipeline is to render the novel views corresponding to

the user’s location, so that they see the correct views of the captured scene as they move.

Most rendering approaches adopt the standard graphics pipeline, which has the benefit

of efficient hardware implementations across a large range of devices, from mobile to

desktop setups. This efficient rendering hardware enables rendering in real time, and

even hitting the high frame rates of 80–144 Hz required to feed state-of-the-art VR

head-mounted displays [50].

Panoramas and omnidirectional stereo content only require a change to perspec-

tive projection to be viewed by users. This does not require any explicit geometry and

can be implemented in 2D or, equivalently, by using textured spheres viewed from vir-

tual perspective cameras. Many other approaches also use textured geometry directly

[17,32,33,69,91]. Even multiplane images [25,63,98,124] can be rendered using tex-

tured geometry, by texturing the semi-transparent layers on parallel planes that are ap-

propriately spaced, and using alpha compositing in the z-buffer during rendering.

Modern graphics pipelines are also programmable using shaders, which provides an

opportunity to influence the rendering more locally depending on the viewing direction,

for example. Flow-based blending has been used to interpolate novel views on the fly

[58] and per pixel or light ray [86], also in a view-dependent fashion [5]. When many

input views are combined to synthesize novel views, they also require spatial blending

to ensure smooth transitions [75]. Ultimately, the decision of how to blend multiple ob-

servations of a single surface point can even be optimized using a deep neural network

[34]. However, evaluating the neural network per frame at run time noticeably impacts

the overall frame rate that is achievable with this approach, which does not yet reach

real-time rates.

3 Neural Scene Representations and Rendering

Over the last few years, a new class of algorithms has emerged that has great poten-

tial for capturing, representing, and rendering real scenes in virtual environments—

neural scene representations and rendering. The idea behind these algorithms is similar

to classical approaches: given a set of input views, distill these into an intermediate

representation, and then render the scene from novel viewpoints using the intermediate

representation. However, a neural representation differs from a classical scene represen-

tation, such as a polygon mesh, a 3D point cloud, an implicit function, or a voxel grid, in

being differentiable with respect to its parameters. In combination with a differentiable

renderer that takes the neural scene representation as well as a camera position and ori-

entation, i.e., a pose, as input and computes a 2D image from the camera’s perspective,

neural scene representations allow for end-to-end optimization of the representation

supervised only on the images.

For example, Sitzmann et al. [94] recently proposed a voxel representation where

each voxel is located in a Cartesian grid and stores a feature vector. A differentiable

renderer with occlusion reasoning then projects these 3D features into 2D images and a

2D image-to-image translation rendering network then converts the projected features
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into the RGB values of the final images. During training, the weights of the voxel fea-

tures are optimized given only a set of posed RGB images of the scene. Once optimized,

the neural voxels can be rendered into 2D RGB images given an arbitrary camera pose.

Due to the fact that the intermediate voxel representation is inherently defined in a three-

dimensional space, all projected views will be approximately consistent across different

camera perspectives. This can be interpreted as choosing a neural network architecture

that is aware of the 3D structure of the scene, simply by choosing an adequate scene

representation. Several different classes of neural scene representations have been pro-

posed over the last few years, which we briefly outline in the following.

Image-based Rendering with Deep Flow Prediction and Learned Image Blending. Re-

cently, deep learning has been used to aid image-based rendering via learning subtasks,

such as the prediction of occlusion-aware optical flow between views [42,43,76,125]

and/or the computation of the blending weights [26,34]. While this approach can

achieve photorealism, it depends on a dense set of high-resolution photographs to be

available at rendering time and requires an error-prone reconstruction step to obtain the

geometric proxy.

Unstructured or Weakly Structured Latent Representations. Other approaches aim at

distilling an intermediate representation, or embedding, from the images. The benefit

of such an approach is that the input views may not be necessary during inference

anymore, after the embedding is learned. This is beneficial for multiple reasons: the

used computational resources (such as memory) can be optimized; embeddings have the

potential to disentangle different effects, such as lighting, shading, geometry etc., which

can make them more interpretable or potentially even editable [51,61,118]; embeddings

can sometimes also be interpolated or new examples within this latent space could even

be generated. Therefore, learning structured embeddings is a topic of great interest.

Several approaches have been proposed that rely on embedding views into a latent

space, but without enforcing any geometrical constraints [22,24,104]. Weakly struc-

tured embeddings [14,84,116], such as learning rotation-equivariant features by explic-

itly rotating the latent space feature vectors, have also been proposed. However, all of

these approaches have in common that there are little to no guarantees that the synthe-

sized views create consistent perspective projections because the underlying network

structures do not enforce or capture the 3D structure of the scene explicitly. In other

words, the choice of embedding captures the structure of the data weakly or not at all.

Using Proxy Geometries and Neural Textures. In many applications, such as recon-

structing faces [126], hands, or whole body performances, we have detailed prior

knowledge of the types of objects in the scene. For example, the image or 3D model

of a face can be well described by a blendshape—a low-dimensional geometric basis

function representation that only requires a few coefficients to model the face. Nonlin-

ear optimization can be used to fit a blendshape representation to an image or video or

a face. Similarly, parametric representations of hands or bodies exist and can be used

to fit a 3D proxy geometry to 2D images or videos. Although such proxy geometries

represent a good first-order approximation of the underlying shape, many subtle details
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of the appearance, like the interior of the mouth, facial hair, or other perceptually im-

portant details, are typically not modeled in a convincing manner. However, such proxy

geometries have great potential for neural scene representations because they can be

rendered using existing computer graphics pipelines from arbitrary perspectives. To ad-

equately model the appearance using a neural scene representation, a clever idea is to

use the proxy geometry and texture it with a 2D texture containing learnable features.

These features can then be optimized in a training stage for a given example image or

video and later re-rendered. This approach uses little memory, because we do not have

to learn a 3D model but only a texture and the neural renderer is a simple 2D (convo-

lutional) neural network that computes an image-to-image translation from 2D features

to RGB pixel values. This idea has so far been applied to deep video portraits [46] and

it has been explored as a more general concept of neural textures [105].

One of the limitations of parametric representations is that they exist only for spe-

cific types of objects, such as faces, hands, and bodies. However, the idea of proxy

geometry can also be applied to more general 3D computer vision pipelines. In this

case, the reconstructed geometry is often coarse, it can have holes or it may be missing

other parts. Yet, such an incomplete or noisy point cloud or mesh can still be easily

rendered into arbitrary camera poses and an image-to-image translation network could

then learn how to map from the incomplete projection of the point cloud to a photoreal-

istic image. This idea was recently explored by Martin-Brualla et al. [60] and represents

another example of combining proxy geometry with a differentiable (part of a) renderer.

Multiplane Image Representations. Many recent proposals on neural scene representa-

tions are based on the idea of decomposing a set of input views, or a light field, into a

layered representation that can be re-projected into the input views but also into novel

views. This is another example of using proxy geometry along with learnable parts, but

the proxy geometry is a simple set of planes that can easily be projected into different

cameras using homographies. Wetzstein et al. [52,112,113] optimized such representa-

tions for display application from densely sampled input light fields via computed to-

mography or non-negative matrix and tensor factorizations. More recently, deep learn-

ing based approaches have been proposed to optimize such representations using the

input of small baseline stereo cameras [98,124], from single-input image [106], or from

four input images [25] with learned gradient descent. The primary challenge in these

deep learning based approaches is to work with a set of sparsely sampled input views

and ensure that the views synthesized in between these given images look perceptually

realistic. Another related approach recently proposed guided camera placement for such

irregularly sampled light fields [63]. Most of these layered view synthesis approaches

optimize RGBA color values at each position of the layers. The additional alpha channel

allows for transparency-aware “soft” reconstructions by blending the layers for perspec-

tives from different camera perspectives [80]. Figure 6 shows a visual comparison of

classic and learned multiplane view synthesis approaches.

One benefit for multiplane image representations is that they are simple and, once

optimized, enable real-time rendering of the layered representation. A downside is that

novel views can only be synthesized over a limited baseline, i.e., we cannot synthesize

novel views that look at the layers from the side.
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Whole scene LFI [10] ULR [7]

Soft3D [80] Deep BW [26,43] LLFF [63]

Fig. 6: Visual comparison of view synthesis results on the challenging T-Rex scene

between traditional and neural rendering approaches. Light field interpolation [10] fails

to align objects at different depths. Unstructured lumigraph rendering [7] suffers from

poorly reconstructed geometry due to the thin ribs. Soft 3D reconstruction [80] shows

blurry views caused by depth uncertainty. Deep backwards warping [26,43] exhibits

visual artifacts near occlusion boundaries like the thin ribs. Local light-field fusion [63]

smoothly blends neighboring local light fields to render novel views to minimize visual

artifacts. Figure adapted from Mildenhall et al. [63].

Deep Voxel Representations. Another specific type of proxy geometry is a voxel grid,

which overcomes the limited-baseline issue of sparse layered representations. For ex-

ample, Sitzmann at al. [94] proposed an occlusion-aware volume renderer in combina-

tion with a grid of features that is trained only on posed 2D RGB images of a scene.

Nguyen-Phuoc et al.’s HoloGAN [70] shows that deep voxel representations can also be

learned from natural images in an unsupervised manner. The implicit deep 3D features

enable disentangling of 3D pose and object identity, which can further be decomposed

into shape and appearance. A different variant of this idea was recently shown to be able

to generate real-time 3D reconstructions of human faces and actors [57,110]. One of the

downsides of voxel representations is the relatively high memory footprint required to

store all the voxels. Representing RGBA values or feature vectors on a Cartesian grid

has the benefits of allowing convolutions and other intuitive operations to be performed

on the grid [74], for example using a convolutional neural network, but another down-

side is that values have to be stored at all locations of the grid, even if there is no object

there.

Deep Point Cloud Representations. Differentiable point clouds have the potential to

overcome some of the memory limitations of layered or voxel-based representations
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Fig. 7: Interpolating latent code vectors of cars and chairs in the ShapeNet dataset while

rotating the camera around the model. Features smoothly transition from one model to

another. Figure reproduced from Sitzmann et al. [95].

by adaptively changing the positions of the points [119]. This relates to the approach

of Martin-Brualla et al. [60] who used a fixed (i.e., non-optimizable) proxy geometry.

Neural re-rendering of point clouds is a promising postprocessing step that not only fills

in gaps in rasterized point cloud renderings [2], but also also provides control over scene

appearance [62]. A challenge of working with differentiable point clouds is to update

the locations of the 3D points by backpropagating through a differentiable renderer,

such as a splatting algorithm.

Continuous Neural Representations. Finally, differentiable continuous scene represen-

tations have also been explored. For example, Park et al. [77] recently proposed to

model a signed distance function as a neural network and train it to learn an object’s

shape supervised on a 3D model of that object. Sitzmann et al. [95] introduced a dif-

ferentiable renderer for such continuous scene representations to be able to train it in

an end-to-end manner supervised only by posed 2D RGB images. Moreover, their ap-

proach allows for the scene representation to be generalized across object classes, en-

abling interpolation of the representations (see Figure 7), generating entirely new ob-

jects of a specific class, or fitting a 3D representation to a single 2D RGB image.

In summary, different variants of neural scene representation are emerging and show

great potential to applications in capturing, representing, and rendering real environ-

ments in VR and beyond.

4 Limitations of Current Practice and Future Research Directions

Thus far, we have described current practice; next, we will discuss limitations of current

practice and potential future research directions to overcome them. One useful framing

device to help conceptualize these limitations is by what type of artifacts they introduce

and by how much it affects the overall experience (Figure 8). Model-based approaches

tend to introduce world inconsistencies which make them look fake, e.g., incorrect ge-

ometry, missing translucency or specular reflections, or suffering from Uncanny Valley

effects in the case of humans. Image-based approaches introduce a different axis of arti-

facts relating to resolution and sampling, interpolation and warping, and tell-tale image

compression errors. Navigating the design space between pure model-based (e.g., clas-

sic computer graphics) and pure image-based techniques (e.g., dense light fields) ex-

poses our world reproduction to many artifacts; throughout these operations, our goal is

to remain within some human-perception tolerable region which minimizes both world

fakeness and image artifacts.
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Fig. 8: One way to conceptualize our design-space trade-off is as one between model-

and image-based methods. Model-based techniques tend to suffer ‘uncanny valley’ ef-

fects where the world appears only almost real, which is off-putting for human re-

production. On the other hand, image-based techniques exhibit characteristic artifacts

which reduce quality and are easy to identify as ‘unreal’, such as sampling and compres-

sion artifacts. Our goal is to find a representation which minimizes both effects. Repro-

duced from whiteboard discussions with Brian Cabral and colleagues at the Dagstuhl

RealVR seminar (July 2019).

Saturating the Senses (Vision): Current technologies for capture fall short of convinc-

ing real-world depiction purely from a raw pixel perspective, but are perhaps closer than

you might anticipate. While perception varies from person to person, for spatial reso-

lution, Facebook’s Manifold camera [78] with 8K RED sensors over 180° (≈0.0225°

resolution) is approaching the needed spatial resolution to match 20/20 visual acuity

(0.0167° resolution). Temporal sampling of 60 Hz (16.6 ms per frame) is also approach-

ing experimental rates for the task of individual image recognition (at least 14 ms [44]),

though flickering artifacts can be seen at higher framerates. Static human eye dynamic

range is relatively low (100:1, or 6.5 stops) vs. the approximately 15 stops available on

the sensor [23], though eye dynamic contrast is extremely large (1014, or 46 stops) and

sensitive to very low luminance levels (10−6 cd/m2). While signal-to-noise ratios are

improving at high ISO levels, the sensor would still struggle to produce a non-noisy im-

age at this light level. This high sensitivity and low noise improves color reproduction.

Binocular stereo provides depth cues from eye vergence, which is reproduced through

multi-view renderings of the multi-camera reconstructions of the world geometry.

On the display side, current technologies also fall sort but may be closer than an-

ticipated. The current best-in-class headset (Valve Index, September 2019 [108]) has

a display panel resolution of 1440×1600 pixels per eye, and an LCD panel with dense

subpixels to reduce the ‘screen door’ effect. Over a field of view of ≈130°, this provides

0.09° resolution. Temporal resolution is up to 144 Hz. One limitation with headsets is

eye accommodation to allow focusing. This can be accomplished with very dense sen-

sors for near-eye light field displays [52], or to use eye tracking and variable-depth

displays [50].
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These limits highlight the general quality issue with reconstructing imagery into

VR-rendered representations: that the fidelity of the representation must match the fi-

delity of the display. Capture pixel resolution currently outstrips display resolution, but

our true problem is one of reconstructing a representation which, when rendered, still

saturates the display. This is easier for image-based rather than model-based recon-

struction methods as they are ‘closer to the camera’, but image-based methods can limit

another of our key senses: motion.

Saturating the Senses (Motion): Vision combines with the vestibular and propriocep-

tion senses to provide human beings with an awareness of motion. This must be keenly

attended to in VR, with reproduction of motion parallax and occlusion required to

achieve 6DoF video. However, the ‘headbox’ of allowable motion is limited by the base-

line of the capturing camera system. Most 6DoF camera systems have baselines smaller

than one meter; practically building and using a larger camera system is challenging.

Beyond this, content must be hallucinated (or inpainted) in a plausible way [124], for

which we can only expect ‘good at best’ quality and which becomes harder and harder

as we move farther outside the baseline.

Motion also requires fast display pose estimation; head-motion rotation velocity

in daily life can achieve 9 radians per second [8]. Current outside-in tracking systems

(Valve Index) and inside-out (Oculus Quest [73]) provide millimeter-level tracking at

sufficient framerates to meet their display framerates, though precise details are un-

specified. Future work in this area will aim to track more of the human body beyond

the head (hands, full-body pose) to allow greater interaction with our reconstructed VR

worlds [50].

Capturing Everything Easily: Casual capture is another area of persistent need. Pro-

fessional cameras and workflows are expensive and require expertise, and few systems

exist to allow novice users to capture a scene with cheap hardware. For static scenes,

casual capture can exploit the space/time swap: that space can be traded for time by

moving the camera [5]. This lets the user ‘sweep over’ the scene from different poses,

say with a smartphone, to complete the capture [69].

However, much interesting content is of dynamic scenes, which requires algorithms

and representations to be temporally consistency. This is a much stricter requirement on

accuracy as human sensitivity to perceptual effects over time is strong, e.g., any flick-

ering at the edges of objects within a geometry reconstruction is particularly notice-

able. Representations which explicitly accommodate time can also help; one example

is spatiotemporal atlases for time-varying texture and geometry [82], but future work is

needed for other representations along the image-to-model-based spectrum.

Complex material acquisition is another limitation and area of significant future

work. Beyond simple Lambertian diffuse texture, we need to represent materials with

shiny or glossy reflectances via 4D BRDFs, and to be able to capture transparent mate-

rials like glass. Without these effects, the world can look fake as objects do not visually

respond realistically to human motion. Some methods exist for spatially-varying BRDF

capture of objects from smartphones [68], but scaling these to whole scenes requires

sampling many directions and is typically not possible for dynamic scenes. This sug-
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gests further work in data-driven methods to fit known material models to sparse scene

samples.

Similarly, we also wish to capture complex illumination, typically for editing ap-

plications like object insertion or relighting [61]. 360° imagery can act as environment

reflection maps for lighting objects [103], but illumination estimation from perspec-

tive views is an ill-posed problem and requires learning-based methods [29,54]. Future

work into plausible illumination reconstruction using inverse or differentiable rendering

techniques holds promise.

Finally, to go beyond visual reproduction and into complex editing and interaction,

capture must extend beyond representations of geometry and appearance and into object

and scene semantics [47], context via hierarchical scene and relationship graphs [83],

and even the capture of other physical properties such as aural properties, functional

properties like mechanical actuation and articulation, and material properties like mass

and elasticity.

Big Data Problems: Cameras which saturate our senses will produce terabytes of data

for video sequences of just a few minutes in length. This question of compression is one

that may initially seem tantalizingly simple because of the high level of redundancy

in the data, e.g., for light field or 6DoF imagery, where each view is ‘just a little bit

different’. However, the minor differences in these samples are often what makes the

viewing effect convincing.

Some representations focus on compression, storage, and transmission factors, such

as formats that fit within a classic 2D video pipeline, like side-by-side omnidirectional

stereo or RGB+D 360° representations [91]. Here, changes in time are well-handled.

However, compressing in screen space in 2D can significantly limit flexibility and ul-

timately quality, making correct occlusion and motion parallax difficult. Scene-space

reconstruction and parameterization allows these effects; however, for geometry-based

reconstruction representations, these changes require more work to maintain temporal

handling for easy compression. Work in 4D geometry from video addresses some of

these challenges for human avatars [66,67], but representing larger dynamic scenes is

still complex.

Our discussion in this chapter has also implicitly considered pre-recorded and post-

processed data, but one significant area of future work is in producing high-quality

representations and systems for live or streamed experiences. Future work is needed

to produce real-time reconstruction approaches which exploit any and every natural

redundancy in the data to reduce computation time and network transmission.

Perceptual Realism: We can capture to saturate human senses, and we can capture pre-

cise geometry, illumination, and materials for physically-based and model-based repre-

sentations, but this still leaves many other challenges relating to perceptual effects. One

classic effect discussed above is the uncanny valley [64], which hypothesizes percep-

tual effects to robot appearance and now has a casual understanding relating to digital

human avatars. This effect is poorly understood and hard to quantify, particularly for

geometry. Approaches to hide the problem with stylization can be successful. How-

ever, principled progress requires future work in better computational models of human

perception, especially models which are differentiable and so can be used to optimize
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a (neural) reconstruction function. These would allow faster exploration of a complex

design space for capture, reconstruction, representation, and ultimately display by nar-

rowing to only those effects we will see (and see comfortably).

Neural Rendering: Neural rendering techniques are plentiful and promising, with the

space of possible techniques currently being explored. Neural scene representations ex-

ist to aid capture, stylization, hallucination, and view synthesis. That said, there are a

few caveats with scene generality, representation size, real-time rendering, and editabil-

ity.

The scene generality limitation is that many current techniques learn a neural rep-

resentation which is specific to just one object or scene. This approach allows high-

quality rendering, but new scenes require retraining the networks from new training

data [34,94]. Future work to increase generalizability should look at how to resolve the

trade-off between network capacity and quality. This problem is also related to the size

of the neural representation and the ability to render quickly. Each network has millions

of parameters and requires a large GPU to process, which limits their applicability via

memory, rendering, and distribution costs. Future work should investigate efficient and

compressible representations for neural scene rendering.

Finally, one benefit of physically-based scene models is that they can be edited

easily. This is not the case for most neural representations, which have obtuse ‘black

box’ representations which are difficult to inspect let alone edit. Current works attempt

to build interfaces to help understand the generation process for 2D image synthesis [4]

and steer it towards exposing more useful controls [40]; these must be extended for

neural scene rendering to be useful for VR. Going forward, effort should be placed in

constraining the learned representations to be implicitly editable in predictable ways.

Tools and Workflow: The question of editable representations—both classic and

neural—highlights the critical role of tools and workflow in the capture and recon-

struction pipeline. This area is often overlooked by academia but is vitally important; it

requires partnerships between industry and academia to make reliable progress in tools

that are actually adopted.

One question is the ease of use: hardware and software tools are currently catered

towards experts, and casual capture is important, but both sets of users would benefit

from representations which allow easier processing and manipulation of data. The prob-

lem is that different representations are better or worse for different tasks, and so the

choice of production capture and representation often depends upon the scene content.

For example, distant content can be better as an image-based representation to maxi-

mize image quality (suggesting 360° video), but up-close content can be better as depth-

or model-based reconstruction to maximize realistic motion effects (suggesting depth or

multi-view camera capture). The ‘chicken and egg’ problem of not knowing which sys-

tems to use until the content is captured lacks flexibility, and this has knock-on effects

for the post-production workflow that also depends on the representation.

If the best representation for the job is task specific, then the underlying question

could be one of how to allow easy conversion between representations. Most conversion

operations require resampling, which is often lossy. This conversion must also happen
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quickly and be memory efficient to allow engineers and artists to flexibly pick the best

representation for the task at hand.

Editing tools themselves for multi-view content are also nascent, with limitations

both in low-level reconstruction for matting and depth/layer decomposition, for inter-

active user operations like selection, geometry and appearance editing, and for imagery

integration operations like compositing and CG insertion. Each of these tasks must be

completed in spatio-temporally consistent ways, which requires high-accuracy recon-

struction and typically some form of additional explicit consistency constraint.

While the craft has made significant progress over the past five years, we also lack

higher-level tools and understanding for storytelling in VR, especially to allow novice

users to express their experiences and ideas. In principle, VR can be a powerful method

of ‘experiential storytelling’—to put the viewer in the shoes of another. Efforts to re-

duce the cost and increase the ease of use and accessibility of our creative tools will

democratize the capture, reconstruction, and editing pipeline and help more people tell

effective stories.

Trust and Privacy: One new area of research is in building reconstructions and rep-

resentations which respect privacy. This topic is often seen as more pressing for aug-

mented reality systems (above VR systems), for which real-world capture, reconstruc-

tion, and representation techniques are equally as important. Scene capture can often

include other humans who have not given permission for their representation, and these

people may need to be anonymized in a realistic way [38]. Recent work has also looked

at ways to prevent information leakage via unwanted scene reconstructions of peo-

ple’s homes derived from AR/VR headset tracking structure-from-motion systems [97].

Likewise, future work is needed on the security of information contained within neural

representations.

5 Conclusion

If VR is to become more than just a technology for synthetic scenes—to use its pow-

erful telepresence capability to impact domains across industry, commerce, healthcare,

and the arts—then we must be able to capture and reproduce the dynamic visual world

with high fidelity. We have discussed a range of existing and state-of-the-art solutions

to capturing, reconstructing, representing, transmitting, and rendering the world for VR

applications. Challenges remain: finding the sweet spots in the complex design space is

difficult, and fundamental trade-offs about capture sampling and reproduction quality

still remain. However, new neural representations which combine geometry proxies and

learned appearance representation functions offer one potential approach to overcom-

ing these trade-offs with domain-specific data-driven representations. Even with these

challenges, the field of VR has made significant progress in the past five years, and

capturing and distributing the real world is now easier than ever. We await the coming

progress over the next five years with bated breath, particularly for VR’s potential to

improve the quality of telecommunications and ultimately reduce our carbon footprint

by reducing the need for travel.
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Learning persistent 3D feature embeddings. In: Proceedings of the International Conference

on Computer Vision and Pattern Recognition (CVPR). pp. 2437–2446 (2019)
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