26,674 research outputs found

    A Generalised Sidelobe Canceller Architecture Based on Oversampled Subband Decompositions

    No full text
    Adaptive broadband beamforming can be performed in oversampled subband signals, whereby an independent beamformer is operated in each frequency band. This has been shown to result in a considerably reduced computational complexity. In this paper, we primarily investigate the convergence behaviour of the generalised sidelobe canceller (GSC) based on normalised least mean squares algorithm (NLMS) when operated in subbands. The minimum mean squared error can be limited, amongst other factors, by the aliasing present in the subbands. With regard to convergence speed, there is strong indication that the subband-GSC converges faster than a fullband counterpart of similar modelling capabilities. Simulations are presented

    Laser Interferometer Gravitational-Wave Observatory beam tube component and module leak testing

    Get PDF
    Laser Interferometer Gravitational-Wave Observatory (LIGO) is a joint project of the California Institute of Technology and the Massachusetts Institute of Technology funded by the National Science Foundation. The project is designed to detect gravitational waves from astrophysical sources such as supernova and black holes. The LIGO project constructed observatories at two sites in the U.S. Each site includes two beam tubes (each 4 km long) joined to form an "L" shape. The beam tube is a 1.25 m diam 304 L stainless steel, ultrahigh vacuum tube that will operate at 1×10^–9 Torr or better. The beam tube was manufactured using a custom spiral weld tube mill from material processed to reduce the outgassing rate in order to minimize pumping costs. The integrity of the beam tube was assured by helium mass spectrometer leak testing each component of the beam tube system prior to installation. Each 2 km long, isolatable beam tube module was then leak tested after completion

    Digital Signal Processing Education: Technology and Tradition

    No full text
    In this paper we discuss a DSP course presented to both University students and to participants on industrial short courses. The "traditional" DSP course will typically run over one to two semesters and usually cover the fundamental mathematics of z-, Laplace and Fourier transforms, followed by the algorithm and application detail. In the course we will discuss, the use of advanced DSP software and integrated support software allow the presentation time to be greatly shortened and more focussed algorithm and application learning to be introduced. By combining the traditional lecture with the use of advanced DSP software, all harnessed by the web, we report on the objectives, syllabus, and mode of teaching

    Investigation of the free flow electrophoretic process

    Get PDF
    The effects of gravity on the free flow electrophoretic process was demonstrated. The free flow electrophoresis chamber used to demonstrate the effects of gravity on the process was of a proprietary design. This chamber was 120 cm long, 16 cm wide, and 0.15 cm thick. Flow in this chamber was in the upward direction and exited through 197 outlets at the top of the chamber. During electrophoresis a stream of sample was injected into the flow near the bottom of the chamber and an electrical field was applied across the width of the chamber. The field caused a lateral force on particles in the sample proportional to the inherent change of the particle and the electric field strength. Particle lateral velocity was then dependent on the force due to viscous drag which was proportional to particle size and particle shape dependent

    An integrated surface science approach towards metal oxide catalysis

    Get PDF
    The function of a metal oxide catalyst was investigated by an integrated approach, combining a variety of surface science techniques in ultrahigh vacuum with batch reactor conversion measurements at high gas pressures. Epitaxial FeO(111), Fe3O4(111) and a?Fe2O3(0001) films with defined atomic surface structures were used as model catalysts for the dehydrogenation of ethylbenzene to styrene, a practized selective oxidation reaction performed over iron oxide based catalysts in the presence of steam. Ethylbenzene and styrene adsorb onto regular terrace sites with their phenyl rings oriented parallel to the surface, where the p-electron systems interact with Lewis acidic iron sites exposed on Fe3O4(111) and a?Fe2O3(0001). The reactant adsorption energies observed on these films correlate with their catalytic activities at high pressures, which indicates that the surface chemical properties do not change significantly across the pressure gap. Atomic defects were identified as catalytically active sites. Based on the surface spectroscopy results a new mechanism was proposed for the ethylbenzene dehydrogenation, where the upward tilted ethylgroup of flat adsorbed ethylbenzene is dehydrogenated at Brønsted basic oxygen sites located at defects and the coupling of the phenyl ring to Fe3+ terrace sites determines the reactant adsorption-desorption kinetics. The findings are compared to kinetic measurements over polycrystalline catalyst samples, and an extrapolation of the reaction mechanism found on the model systems to technical catalysts operating under real conditions is discussed. The work demonstrates the applicability of the surface science approach also to complex oxide catalysts with implications for real catalysts, provided suitable model systems are available
    • …
    corecore