30,467 research outputs found

    Meteorite cloudy zone formation as a quantitative indicator of paleomagnetic field intensities and cooling rates on planetesimals

    Full text link
    Metallic microstructures in slowly-cooled iron-rich meteorites reflect the thermal and magnetic histories of their parent planetesimals. Of particular interest is the cloudy zone, a nanoscale intergrowth of Ni-rich islands within a Ni-poor matrix that forms below 350{\deg}C by spinodal decomposition. The sizes of the islands have long been recognized as reflecting the low-temperature cooling rates of meteorite parent bodies. However, a model capable of providing quantitative cooling rate estimates from island sizes has been lacking. Moreover, these islands are also capable of preserving a record of the ambient magnetic field as they grew, but some of the key physical parameters required for recovering reliable paleointensity estimates from magnetic measurements of these islands have been poorly constrained. To address both of these issues, we present a numerical model of the structural and compositional evolution of the cloudy zone as a function of cooling rate and local composition. Our model produces island sizes that are consistent with present-day measured sizes. This model enables a substantial improvement in the calibration of paleointensity estimates and associated uncertainties. In particular, we can now accurately quantify the statistical uncertainty associated with the finite number of islands and the uncertainty on their size at the time of the record. We use this new understanding to revisit paleointensities from previous pioneering paleomagnetic studies of cloudy zones. We show that these could have been overestimated but nevertheless still require substantial magnetic fields to have been present on their parent bodies. Our model also allows us to estimate absolute cooling rates for meteorites that cooled slower than 10000{\deg}C My-1. We demonstrate how these cooling rate estimates can uniquely constrain the low-temperature thermal history of meteorite parent bodies.Comment: Manuscript resubmitted after revision

    Mesoscopic Spin-Boson Models of Trapped Ions

    Get PDF
    Trapped ions arranged in Coulomb crystals provide us with the elements to study the physics of a single spin coupled to a boson bath. In this work we show that optical forces allow us to realize a variety of spin-boson models, depending on the crystal geometry and the laser configuration. We study in detail the Ohmic case, which can be implemented by illuminating a single ion with a travelling wave. The mesoscopic character of the phonon bath in trapped ions induces new effects like the appearance of quantum revivals in the spin evolution.Comment: 4.4 pages, 5 figure

    Visualization design and verification of Ada tasking using timing diagrams

    Get PDF
    The use of timing diagrams is recommended in the design and testing of multi-task Ada programs. By displaying the task states vs. time, timing diagrams can portray the simultaneous threads of data flow and control which characterize tasking programs. This description of the system's dynamic behavior from conception to testing is a necessary adjunct to other graphical techniques, such as structure charts, which essentially give a static view of the system. A series of steps is recommended which incorporates timing diagrams into the design process. Finally, a description is provided of a prototype Ada Execution Analyzer (AEA) which automates the production of timing diagrams from VAX/Ada debugger output

    Deformation of grain boundaries in polar ice

    Full text link
    The ice microstructure (grain boundaries) is a key feature used to study ice evolution and to investigate past climatic changes. We studied a deep ice core, in Dome Concordia, Antarctica, which records past mechanical deformations. We measured a "texture tensor" which characterizes the pattern geometry and reveals local heterogeneities of deformation along the core. These results question key assumptions of the current models used for dating

    QCD NLO with Powheg matching and top threshold matching in WHIZARD

    Full text link
    We present the status of the automation of NLO processes within the event generator WHIZARD. The program provides an automated FKS subtraction and phase space integration over the FKS regions, while the (QCD) NLO matrix element is accessed via the Binoth Les Houches Interface from an externally linked one-loop program. Massless and massive test cases and validation are shown for several e+e- processes. Furthermore, we discuss work in progress and future plans. The second part covers the matching of the NRQCD prediction with NLL threshold resummation to the NLO continuum top pair production at lepton colliders. Both the S-wave and P-wave production of the top pair are taken into account in the resummation. The inclusion in WHIZARD allows to study more exclusive observables than just the total cross section and automatically accounts for important electroweak and relativistic corrections in the threshold region.Comment: 9 pages, 3 figures, Talk given at 12th International Symposium on Radiative Corrections (Radcor 2015) and LoopFest XIV (Radiative Corrections for the LHC and Future Colliders); v2: reference adde

    Raman scattering investigation across the magnetic and MI transition in rare earth nickelate RNiO3 (R = Sm, Nd) thin films

    Full text link
    We report a temperature-dependent Raman scattering investigation of thin film rare earth nickelates SmNiO3, NdNiO3 and Sm0.60Nd0.40NiO3, which present a metal-to-insulator (MI) transition at TMI and an antiferromagnetic-paramagnetic Neel transition at TN. Our results provide evidence that all investigated samples present a structural phase transition at TMI but the Raman signature across TMI is significantly different for NdNiO3 (TMI = TN) compared to SmNiO3 and Sm0.60Nd0.40NiO3 (TMI =/ TN). It is namely observed that the paramagnetic-insulator phase (TN < T < TMI) in SmNiO3 and Sm0.60Nd0.40NiO3 is characterized by a pronounced softening of one particular phonon band around 420 cm-1. This signature is unusual and points to an important and continuous change in the distortion of NiO6 octahedra (thus the Ni-O bonding) which stabilizes upon cooling at the magnetic transition. The observed behaviour might well be a general feature for all rare earth nickelates with TMI =/ TN and illustrates intriguing coupling mechanism in the TMI > T > TN regime.Comment: Revised & published versio

    Solutions of Adler's lattice equation associated with 2-cycles of the Backlund transformation

    Full text link
    The BT of Adler's lattice equation is inherent in the equation itself by virtue of its multidimensional consistency. We refer to a solution of the equation that is related to itself by the composition of two BTs (with different Backlund parameters) as a 2-cycle of the BT. In this article we will show that such solutions are associated with a commuting one-parameter family of rank-2 (i.e., 2-variable), 2-valued mappings. We will construct the explicit solution of the mappings within this family and hence give the solutions of Adler's equation that are 2-cycles of the BT.Comment: 10 pages, contribution to the NEEDS 2007 proceeding
    corecore