209 research outputs found

    An Efficient Coding Theory for a Dynamic Trajectory Predicts non-Uniform Allocation of Grid Cells to Modules in the Entorhinal Cortex

    Full text link
    Grid cells in the entorhinal cortex encode the position of an animal in its environment using spatially periodic tuning curves of varying periodicity. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal's motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trends seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder of the spikes. This readout scheme requires persistence over varying timescales, ranging from ~1ms to ~1s, depending on the grid cell module. Our results suggest that the brain employs an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory coding.Comment: 23 pages, 5 figures. Supplemental Information available from the authors on request. A previous version of this work appeared in abstract form (Program No. 727.02. 2015 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2015. Online.

    Inter-Particle Distribution Functions for One-Species Diffusion-Limited Annihilation, A+A->0

    Full text link
    Diffusion-limited annihilation, A+A→0A+A\to 0, and coalescence, A+A→AA+A\to A, may both be exactly analyzed in one dimension. While the concentrations of AA particles in the two processes bear a simple relation, the inter-particle distribution functions (IPDF) exhibit remarkable differences. However, the IPDF is known exactly only for the coalescence process. We obtain the IPDF for the annihilation process, based on the Glauber spin approach and assuming that the IPDF's of nearest-particle pairs are statistically independent. This assumption is supported by computer simulations. Our analysis sheds further light on the relationship between the annihilation and the coalescence models.Comment: 15 pages, plain TeX, 3 figures - available upon request (snail mail

    Target annihilation by diffusing particles in inhomogeneous geometries

    Full text link
    The survival probability of immobile targets, annihilated by a population of random walkers on inhomogeneous discrete structures, such as disordered solids, glasses, fractals, polymer networks and gels, is analytically investigated. It is shown that, while it cannot in general be related to the number of distinct visited points, as in the case of homogeneous lattices, in the case of bounded coordination numbers its asymptotic behaviour at large times can still be expressed in terms of the spectral dimension d~\widetilde {d}, and its exact analytical expression is given. The results show that the asymptotic survival probability is site independent on recurrent structures (d~≤2\widetilde{d}\leq2), while on transient structures (d~>2\widetilde{d}>2) it can strongly depend on the target position, and such a dependence is explicitly calculated.Comment: To appear in Physical Review E - Rapid Communication

    Transport and Scaling in Quenched 2D and 3D L\'evy Quasicrystals

    Full text link
    We consider correlated L\'evy walks on a class of two- and three-dimensional deterministic self-similar structures, with correlation between steps induced by the geometrical distribution of regions, featuring different diffusion properties. We introduce a geometric parameter α\alpha, playing a role analogous to the exponent characterizing the step-length distribution in random systems. By a {\it single-long jump} approximation, we analytically determine the long-time asymptotic behavior of the moments of the probability distribution, as a function of α\alpha and of the dynamic exponent zz associated to the scaling length of the process. We show that our scaling analysis also applies to experimentally relevant quantities such as escape-time and transmission probabilities. Extensive numerical simulations corroborate our results which, in general, are different from those pertaining to uncorrelated L\'evy-walks models.Comment: 10 pages, 11 figures; some concepts rephrased to improve on clarity; a few references added; symbols and line styles in some figures changed to improve on visibilit

    Survival probabilities in time-dependent random walks

    Full text link
    We analyze the dynamics of random walks in which the jumping probabilities are periodic {\it time-dependent} functions. In particular, we determine the survival probability of biased walkers who are drifted towards an absorbing boundary. The typical life-time of the walkers is found to decrease with an increment of the oscillation amplitude of the jumping probabilities. We discuss the applicability of the results in the context of complex adaptive systems.Comment: 4 pages, 3 figure

    Survival Probabilities of History-Dependent Random Walks

    Full text link
    We analyze the dynamics of random walks with long-term memory (binary chains with long-range correlations) in the presence of an absorbing boundary. An analytically solvable model is presented, in which a dynamical phase-transition occurs when the correlation strength parameter \mu reaches a critical value \mu_c. For strong positive correlations, \mu > \mu_c, the survival probability is asymptotically finite, whereas for \mu < \mu_c it decays as a power-law in time (chain length).Comment: 3 pages, 2 figure

    L\'evy-type diffusion on one-dimensional directed Cantor Graphs

    Full text link
    L\'evy-type walks with correlated jumps, induced by the topology of the medium, are studied on a class of one-dimensional deterministic graphs built from generalized Cantor and Smith-Volterra-Cantor sets. The particle performs a standard random walk on the sets but is also allowed to move ballistically throughout the empty regions. Using scaling relations and the mapping onto the electric network problem, we obtain the exact values of the scaling exponents for the asymptotic return probability, the resistivity and the mean square displacement as a function of the topological parameters of the sets. Interestingly, the systems undergoes a transition from superdiffusive to diffusive behavior as a function of the filling of the fractal. The deterministic topology also allows us to discuss the importance of the choice of the initial condition. In particular, we demonstrate that local and average measurements can display different asymptotic behavior. The analytic results are compared with the numerical solution of the master equation of the process.Comment: 9 pages, 9 figure

    Phase-Transition in Binary Sequences with Long-Range Correlations

    Full text link
    Motivated by novel results in the theory of correlated sequences, we analyze the dynamics of random walks with long-term memory (binary chains with long-range correlations). In our model, the probability for a unit bit in a binary string depends on the fraction of unities preceding it. We show that the system undergoes a dynamical phase-transition from normal diffusion, in which the variance D_L scales as the string's length L, into a super-diffusion phase (D_L ~ L^{1+|alpha|}), when the correlation strength exceeds a critical value. We demonstrate the generality of our results with respect to alternative models, and discuss their applicability to various data, such as coarse-grained DNA sequences, written texts, and financial data.Comment: 4 pages, 4 figure

    Trapping reactions with subdiffusive traps and particles characterized by different anomalous diffusion exponents

    Full text link
    A number of results for reactions involving subdiffusive species all with the same anomalous exponent gamma have recently appeared in the literature and can often be understood in terms of a subordination principle whereby time t in ordinary diffusion is replaced by t^gamma. However, very few results are known for reactions involving different species characterized by different anomalous diffusion exponents. Here we study the reaction dynamics of a (sub)diffusive particle surrounded by a sea of (sub)diffusive traps in one dimension. We find rigorous results for the asymptotic survival probability of the particle in most cases, with the exception of the case of a particle that diffuses normally while the anomalous diffusion exponent of the traps is smaller than 2/3.Comment: To appear in Phys. Rev.

    Coherent control of correlated nanodevices: A hybrid time-dependent numerical renormalization-group approach to periodic switching

    Full text link
    The time-dependent numerical renormalization-group approach (TD-NRG), originally devised for tracking the real-time dynamics of quantum-impurity systems following a single quantum quench, is extended to multiple switching events. This generalization of the TD-NRG encompasses the possibility of periodic switching, allowing for coherent control of strongly correlated systems by an external time-dependent field. To this end, we have embedded the TD-NRG in a hybrid framework that combines the outstanding capabilities of the numerical renormalization group to systematically construct the effective low-energy Hamiltonian of the system with the prowess of complementary approaches for calculating the real-time dynamics derived from this Hamiltonian. We demonstrate the power of our approach by hybridizing the TD-NRG with the Chebyshev expansion technique in order to investigate periodic switching in the interacting resonant-level model. Although the interacting model shares the same low-energy fixed point as its noninteracting counterpart, we surprisingly find the gradual emergence of damped oscillations as the interaction strength is increased. Focusing on a single quantum quench and using a strong-coupling analysis, we reveal the origin of these interaction-induced oscillations and provide an analytical estimate for their frequency. The latter agrees well with the numerical results.Comment: 20 pager, Revtex, 10 figures, submitted to Physical Review
    • …
    corecore