34,817 research outputs found

    Identification of Coulomb blockade and macroscopic quantum tunneling by noise

    Full text link
    The effects of Macroscopic Quantum Tunneling (MQT) and Coulomb Blockade (CB) in Josephson junctions are of considerable significance both for the manifestations of quantum mechanics on the macroscopic scale and potential technological applications. These two complementary effects are shown to be clearly distinguishable from the associated noise spectra. The current noise is determined exactly and a rather sharp crossover between flux noise in the MQT and charge noise in the CB regions is found as the applied voltage is changed. Related results hold for the voltage noise in current-biased junctions.Comment: 6 pages, 3 figures, epl.cls include

    Ratchet effect in dc SQUIDs

    Full text link
    We analyzed voltage rectification for dc SQUIDs biased with ac current with zero mean value. We demonstrate that the reflection symmetry in the 2-dimensional SQUID potential is broken by an applied flux and with appropriate asymmetries in the dc SQUID. Depending on the type of asymmetry, we obtain a rocking or a simultaneously rocking and flashing ratchet, the latter showing multiple sign reversals in the mean voltage with increasing amplitude of the ac current. Our experimental results are in agreement with numerical solutions of the Langevin equations for the asymmetric dc SQUID.Comment: 10 pages including 5 Postscript figure

    Deformation of grain boundaries in polar ice

    Full text link
    The ice microstructure (grain boundaries) is a key feature used to study ice evolution and to investigate past climatic changes. We studied a deep ice core, in Dome Concordia, Antarctica, which records past mechanical deformations. We measured a "texture tensor" which characterizes the pattern geometry and reveals local heterogeneities of deformation along the core. These results question key assumptions of the current models used for dating

    B\"acklund Transformations of MKdV and Painlev\'e Equations

    Full text link
    For N3N\ge 3 there are SNS_N and DND_N actions on the space of solutions of the first nontrivial equation in the SL(N)MKdVhierarchy,generalizingthetwoSL(N) MKdV hierarchy, generalizing the two Z_2$ actions on the space of solutions of the standard MKdV equation. These actions survive scaling reduction, and give rise to transformation groups for certain (systems of) ODEs, including the second, fourth and fifth Painlev\'e equations.Comment: 8 pages, plain te

    Communications systems technology assessment study. Volume 2: Results

    Get PDF
    The cost and technology characteristics are examined for providing special satellite services at UHF, 2.5 GHz, and 14/12 GHz. Considered are primarily health, educational, informational and emergency disaster type services. The total cost of each configuration including space segment, earth station, installation operation and maintenance was optimized to reduce the user's total annual cost and establish preferred equipment performance parameters. Technology expected to be available between now and 1985 is identified and comparisons made between selected alternatives. A key element of the study is a survey of earth station equipment updating past work in the field, providing new insight into technology, and evaluating production and test methods that can reduce costs in large production runs. Various satellite configurations were examined. The cost impact of rain attenuation at Ku-band was evaluated. The factors affecting the ultimate capacity achievable with the available orbital arc and available bandwidth were analyzed

    The innermost region of the water megamaser radio galaxy 3C403

    Full text link
    The standard unified scheme of active galactic nuclei requires the presence of high column densities of gas and dust potentially obscuring the central engine. So far, few direct subarcsecond resolution studies of this material have been performed toward radio galaxies. The goal of this paper is to elucidate the nuclear environment of the prototypical X-shaped Fanaroff-Riley type II radio galaxy 3C403, the only powerful radio galaxy known to host a water megamaser. Very Large Array A-array and single-dish Green Bank and Effelsberg 1.3 cm measurements were performed to locate and monitor the water maser emission. Very Long Baseline Interferometry 6 cm continuum observations were taken to analyze the spatial structure of the nuclear environment at even smaller scales, while the CO J=1-0 and 2-1 transitions were observed with the IRAM 30-m telescope to search for thermal emission from a spatially extended, moderately dense gas component.[abridged]Comment: 11 pages, 12 figures, accepted by A&A. For a version with high quality figures, see http://erg.ca.astro.it/~atarchi/3C403

    Non-Markovian master equation for a damped oscillator with time-varying parameters

    Full text link
    We derive an exact non-Markovian master equation that generalizes the previous work [Hu, Paz and Zhang, Phys. Rev. D {\bf 45}, 2843 (1992)] to damped harmonic oscillators with time-varying parameters. This is achieved by exploiting the linearity of the system and operator solution in Heisenberg picture. Our equation governs the non-Markovian quantum dynamics when the system is modulated by external devices. As an application, we apply our equation to parity kick decoupling problems. The time-dependent dissipative coefficients in the master equation are shown to be modified drastically when the system is driven by π\pi pulses. For coherence protection to be effective, our numerical results indicate that kicking period should be shorter than memory time of the bath. The effects of using soft pulses in an ohmic bath are also discussed

    Environment-dependent dissipation in quantum Brownian motion

    Get PDF
    The dissipative dynamics of a quantum Brownian particle is studied for different types of environment. We derive analytic results for the time evolution of the mean energy of the system for Ohmic, sub-Ohmic and super-Ohmic environments, without performing the Markovian approximation. Our results allow to establish a direct link between the form of the environmental spectrum and the thermalization dynamics. This in turn leads to a natural explanation of the microscopic physical processes ruling the system time evolution both in the short-time non-Markovian region and in the long-time Markovian one. Our comparative study of thermalization for different environments sheds light on the physical contexts in which non-Markovian dissipation effects are dominant.Comment: 10 pages, 6 figures, v2: added new references and paragraph
    corecore