34 research outputs found
Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI
It has often been proposed that regions of the human parietal and/or frontal lobe may modulate activity in visual cortex, for example, during selective attention or saccade preparation. However, direct evidence for such causal claims is largely missing in human studies, and it remains unclear to what degree the putative roles of parietal and frontal regions in modulating visual cortex may differ. Here we used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) concurrently, to show that stimulating right human intraparietal sulcus (IPS, at a site previously implicated in attention) elicits a pattern of activity changes in visual cortex that strongly depends on current visual context. Increased intensity of IPS TMS affected the blood oxygen level–dependent (BOLD) signal in V5/MT+ only when moving stimuli were present to drive this visual region, whereas TMS-elicited BOLD signal changes were observed in areas V1–V4 only during the absence of visual input. These influences of IPS TMS upon remote visual cortex differed significantly from corresponding effects of frontal (eye field) TMS, in terms of how they related to current visual input and their spatial topography for retinotopic areas V1–V4. Our results show directly that parietal and frontal regions can indeed have distinct patterns of causal influence upon functional activity in human visual cortex. Key words: attention, frontal cortex, functional magnetic resonance imaging, parietal cortex, top--down, transcranial magnetic stimulatio
Visual signatures in video visualization
Video visualization is a computation process that extracts meaningful information from original video data sets and conveys the extracted information to users in appropriate visual representations. This paper presents a broad treatment of the subject, following a typical research pipeline involving concept formulation, system development, a path-finding user study, and a field trial with real application data. In particular, we have conducted a fundamental study on the visualization of motion events in videos. We have, for the first time, deployed flow visualization techniques in video visualization. We have compared the effectiveness of different abstract visual representations of videos. We have conducted a user study to examine whether users are able to learn to recognize visual signatures of motions, and to assist in the evaluation of different visualization techniques. We have applied our understanding and the developed techniques to a set of application video clips. Our study has demonstrated that video visualization is both technically feasible and cost-effective. It has provided the first set of evidence confirming that ordinary users can be accustomed to the visual features depicted in video visualizations, and can learn to recognize visual signatures of a variety of motion eventspeer-reviewe
HiHi fMRI: a data-reordering method for measuring the hemodynamic response of the brain with high temporal resolution and high SNR
There is emerging evidence that sampling the blood-oxygen-level-dependent (BOLD) response with high temporal resolution opens up new avenues to study the in vivo functioning of the human brain with functional magnetic resonance imaging. Because the speed of sampling and the signal level are intrinsically connected in magnetic resonance imaging via the T1 relaxation time, optimization efforts usually must make a trade-off to increase the temporal sampling rate at the cost of the signal level. We present a method, which combines a sparse event-related stimulus paradigm with subsequent data reshuffling to achieve high temporal resolution while maintaining high signal levels (HiHi). The proof-of-principle is presented by separately measuring the single-voxel time course of the BOLD response in both the primary visual and primary motor cortices with 100-ms temporal resolution
Технология сборки и сварки труб диаметром 1420 мм.
Цель работы - разработка технологии и технико-экономического обоснования сборки и сварки магистрального трубопровода.
В процессе работы был проведен сравнительный технико-экономический анализ сварки корневого слоя шва двумя способами сварки. Используемая технология, ручная дуговая сварка покрытыми электродами и предлагаемая – механизированная сварка в среде защитных газов.The work purpose - working out of technology and the feasibility report on assemblage and welding of two lashes of the main pipeline consisting of two one-tubes.
In the course of work the comparative technical and economic analysis of procooking of a root layer of a seam has been carried out by two ways of welding. Used technology, manual arc welding by the covered electrodes and offered - the mechanised welding in the environment of protective gases
Optimized EPI for fMRI studies of the orbitofrontal cortex: compensation of susceptibility-induced gradients in the readout direction
Object Most functional magnetic resonance imaging (fMRI) studies record the blood oxygen leveldependent (BOLD) signal using gradient-echo echo-planar imaging (GE EPI). EPI can suffer from substantial BOLD sensitivity loss caused by magnetic field inhomogeneities. Here, BOLD sensitivity losses due to susceptibility- induced gradients in the readout (RO) direction are characterized and a compensation approach is developed
Processing of inconsistent emotional information: an fMRI study
Previous studies investigating the anterior cingulate cortex (ACC) have relied on a number of tasks which involved cognitive control and attentional demands. In this fMRI study, we tested the model that ACC functions as an attentional network in the processing of language. We employed a paradigm that requires the processing of concurrent linguistic information predicting that the cognitive costs imposed by competing trials would engender the activation of ACC. Subjects were confronted with sentences where the semantic content conflicted with the prosodic intonation (CONF condition) randomly interspaced with sentences which conveyed coherent discourse components (NOCONF condition). We observed the activation of the rostral ACC and the middle frontal gyrus when the NOCONF condition was subtracted from the CONF condition. Our findings provide evidence for the involvement of the rostral ACC in the processing of complex competing linguistic stimuli, supporting theories that claim its relevance as a part of the cortical attentional circuit. The processing of emotional prosody involved a bilateral network encompassing the superior and medial temporal cortices. This evidence confirms previous research investigating the neuronal network that supports the processing of emotional information
Predicting Decisions in Human Social Interactions Using Real-Time fMRI and Pattern Classification
Negotiation and trade typically require a mutual interaction while simultaneously resting in uncertainty which decision the partner ultimately will make at the end of the process. Assessing already during the negotiation in which direction one's counterpart tends would provide a tremendous advantage. Recently, neuroimaging techniques combined with multivariate pattern classification of the acquired data have made it possible to discriminate subjective states of mind on the basis of their neuronal activation signature. However, to enable an online-assessment of the participant's mind state both approaches need to be extended to a real-time technique. By combining real-time functional magnetic resonance imaging (fMRI) and online pattern classification techniques, we show that it is possible to predict human behavior during social interaction before the interacting partner communicates a specific decision. Average accuracy reached approximately 70% when we predicted online the decisions of volunteers playing the ultimatum game, a well-known paradigm in economic game theory. Our results demonstrate the successful online analysis of complex emotional and cognitive states using real-time fMRI, which will enable a major breakthrough for social fMRI by providing information about mental states of partners already during the mutual interaction. Interestingly, an additional whole brain classification across subjects confirmed the online results: anterior insula, ventral striatum, and lateral orbitofrontal cortex, known to act in emotional self-regulation and reward processing for adjustment of behavior, appeared to be strong determinants of later overt behavior in the ultimatum game. Using whole brain classification we were also able to discriminate between brain processes related to subjective emotional and motivational states and brain processes related to the evaluation of objective financial incentives