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Visual Signatures in Video Visualization
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Abstract— Video visualization is a computation process that extracts meaningful information from original video data sets and
conveys the extracted information to users in appropriate visual representations. This paper presents a broad treatment of the
subject, following a typical research pipeline involving concept formulation, system development, a path-finding user study, and a
field trial with real application data. In particular, we have conducted a fundamental study on the visualization of motion events in
videos. We have, for the first time, deployed flow visualization techniques in video visualization. We have compared the effectiveness
of different abstract visual representations of videos. We have conducted a user study to examine whether users are able to learn
to recognize visual signatures of motions, and to assist in the evaluation of different visualization techniques. We have applied our
understanding and the developed techniques to a set of application video clips. Our study has demonstrated that video visualization is
both technically feasible and cost-effective. It has provided the first set of evidence confirming that ordinary users can be accustomed
to the visual features depicted in video visualizations, and can learn to recognize visual signatures of a variety of motion events.

Index Terms—Video visualization, volume visualization, flow visualization, human factors, user study, visual signatures, video pro-
cessing, optical flow, GPU rendering.
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1 INTRODUCTION

A video is a piece of ordered sequential data, and viewing videos is a
time-consuming and resource-consuming process. Video visualization
is a computation process that extracts meaningful information from
original video data sets and conveys the extracted information to users
in appropriate visual representations. The ultimate challenge of video
visualization is to provide users with a means to obtain a sufficient
amount of meaningful information from one or a few static visualiza-
tions of a video using O(1) amount of time, instead of viewing the
video using O(n) amount of time where n is the length of the video.
In other words, can we see time without using time (i.e., showing and
viewing images in sequence)?

Video data is a type of 3D volume data. Similar to visualization
of spatial 3D data sets, one can construct a visual representation by
selectively extracting important information from a video volume and
projecting it onto a 2D view plane. However, in many traditional ap-
plications (e.g., medical visualization), the users are normally familiar
with the 3D objects (e.g., bones or organs) depicted in a visual repre-
sentation. In contrast, human observers are not familiar with the 3D
objects depicted in a visual representation of a video because one spa-
tial dimension of these objects shows the temporal dimension of the
video. The problem is further complicated by the fact that, in most
videos, each 2D frame is the projective view of a 3D scene. Hence, a
visual representation of a video on a computer display is, in effect, a
2D projective view of a 4D spatiotemporal domain.

Depicting temporal information in a spatial geometric form (e.g., a
graph showing the weight change of a person over a period) is an ab-
stract visual representation of a temporal function. We therefore call
the projective view of a video volume an abstract visual representa-
tion of a video, which is also a temporal function. Considering that
the effectiveness of abstract representations is well-accepted in many
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applications, it is more than instinctively plausible to explore the use-
fulness of video visualization, for which Daniel and Chen proposed
the following three hypotheses [6]:

1. Video visualization is an (i) intuitive and (ii) cost-effective means
of processing large volumes of video data.

2. Well constructed visualizations of a video are able to show infor-
mation that numerical and statistical indicators (and their con-
ventional diagrammatic illustrations) cannot.

3. Users can become accustomed to visual features depicted in
video visualizations, or be trained to recognize specific features.

The main aim of this work is to evaluate these hypotheses, with a focus
on visualizing motion events in videos. Our contributions include:

• We have, for the first time, considered video visualization as a
flow visualization problem, in addition to volume visualization.
We have developed a technical framework for constructing scalar
and vector fields from a video, and for synthesizing abstract vi-
sual representations using both volume and flow visualization
techniques.

• We have introduced the notion of visual signature for symbol-
izing abstract visual features that depict individual objects and
motion events. We have focused our algorithmic development
and user study on the effectiveness of conveying and recogniz-
ing visual signatures of motion events in videos.

• We have compared the effectiveness of four different abstract vi-
sual representations of motion events, including solid and bound-
ary representations of extracted objects, difference volumes, and
motion flows depicted using glyphs and streamlines.

• We have conducted a user study, resulting in the first set of ev-
idence for supporting hypothesis (3). In addition, the study has
provided an interesting collection of findings that can help us un-
derstand the process of visualizing motion events through their
abstract visual representations.

• We have applied our understanding and the developed techniques
to a set of real videos collected as benchmarking problems in a
recent computer vision project [10]. This has provided further
evidence to support hypotheses (1) and (2).

2 RELATED WORK

Although video visualization was first introduced as a new technique
and application of volume visualization [6], it in fact reaches out to
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a number of other disciplines. The work presented in this paper re-
lates to video processing, volume visualization, flow visualization, and
human factors in motion perception.

Automatic video processing is a research area residing between
two closely related disciplines, image processing and computer vision.
Many researchers studied video processing in the context of video
surveillance (e.g., [4, 5]), and video segmentation (e.g., [18, 24]).
While such research and development is no doubt hugely important
to many applications, the existing techniques for automatic video pro-
cessing are normally application-specific, and are generally difficult to
adapt themselves to different situations without costly calibration.

The work presented in this paper takes a different approach from
automatic video processing. As outlined in [25], it is intended to ‘take
advantage of the human eye’s broad bandwidth pathway into the mind
to allow users to see, explore, and understand large amounts of infor-
mation at once’, and to ‘convert conflicting and dynamic data in ways
that support visualization and analysis’.

A number of researchers have noticed the structural similarity be-
tween video data and volume data commonly seen in medical imaging
and scientific computation, and have explored the avenue of applying
volume rendering techniques to solid video volumes in the context of
visual arts [9, 12, 15]. Daniel and Chen [6] approached the problem
from the perspective of scientific visualization, and demonstrated that
video visualization is potentially an intuitive and cost-effective means
of processing large volumes of video data. Bennett and McMillan [1]
also demonstrated that a spatiotemporal video volume can be used to
aid the process of video editing.

Flow visualization is another important area in scientific visualiza-
tion [16, 20, 26]. There exist several different strategies to display the
vector field associated with a flow. One approach used in this paper
relies on glyphs to show the direction of a vector field at a collection
of sample positions. Typically, arrows are employed to encode di-
rection visually, leading to hedgehog visualizations [7, 14]. Another
approach is based on the characteristic lines, such as streamlines, ob-
tained by particle tracing. A major problem of 3D flow visualization is
the potential loss of visual information due to mutual occlusion. This
problem can be addressed by improving the perception of streamline
structures [13] or by appropriate seeding [11].

In humans, just as in machines, visual information is processed by
capacity and resource limited systems. Limitations exist both in space
(i.e., the number of items to which we can attend) [21] and in time
(i.e., how quickly we can disengage from one item to process another)
[19, 22]. Several recent lines of research have shown that in dealing
with complex dynamic stimuli these limitations can be particularly
problematic [3]. For example, the phenomena of change blindness
[23] and inattentional blindness [17] both show that relatively large
visual events can go completely unreported if attention is misdirected
or overloaded. In any application where multiple sources of informa-
tion must be monitored or arrays of complex displays interpreted, the
additional load associated with motion or change (i.e. the need to in-
tegrate information over time) could greatly increase overall task dif-
ficulty. Visualization techniques that can reduce temporal load clearly
have important human factors implications.

3 CONCEPTS AND DEFINITIONS

A video V is an ordered set of 2D image frames {I1, I2, . . . , In}. It is a
3D spatiotemporal data set, usually resulting from a discrete sampling
process such as filming and animation. The main perceptual differ-
ence between viewing a still image and a video is that we are able to
observe objects in motion (and stationary objects) in a video. For the
purpose of maintaining the generality of our formal definitions, we in-
clude motionlessness as a type of motion in the following discussions.

Let m be a spatiotemporal entity, which is an abstract structure of an
object in motion and encompasses the changes of a variety of attributes
of the object including its shape, intensity, color, texture, position in
each image, and relationship with other objects. Hence the ideal ab-
straction of a video is to transform it to a collection of representations
of such entities {m1,m2, . . . ,mk}.

Video visualization is thereby a function, F : V → I, that maps a
video V to an image I, where F is normally realized by a computa-
tional process, and the mapping involves the extraction of meaning-
ful information from V and the creation of a visualization image I as
an abstract visual representation of V. The ultimate scientific aim of
video visualization is to find functions that can create effective visu-
alization images, from which users can recognize different spatiotem-
poral entities {m1,m2, . . . ,mk} ‘at once’.

A visual signature V (m) is a group of abstract visual features re-
lated to a spatiotemporal entity m in a visualization image I, such that
users can identify the object, the motion, or both by recognizing V (m)
in I. In many ways, it is notionally similar to a handwritten signature
or a signature tune in music. It may not necessarily be unique and
it may appear in different forms and different context. Its recognition
depends on the quality of the signature as well as the user’s knowledge
and experience.

4 TYPES OF VISUAL SIGNATURES

Given a spatiotemporal entity m (i.e., an object in motion), we can
construct different visual signatures to highlight different attributes of
m. As mentioned in Section 3, m encompasses the changes of a variety
of attributes of the object. In this work, we focus on the following
time-varying attributes: (i) the shape of the object, (ii) the position of
the object, (iii) the object appearance (e.g., intensity and texture), (iv)
the velocity of the motion.

Consider an animation video of a simple object in a relatively sim-
ple motion. As shown in Fig. 1(a), the main spatiotemporal entity
contained in the video is a textured sphere moving upwards and down-
wards in a periodic manner.

To obtain the time-varying attributes about the shape and position
of the object concerned, we can extract the object silhouette in each
frame from the background scene. We can also identify the boundary
of the silhouette, which to a certain extent conveys the relationship
between the object and its surroundings (in this simple case, only the
background). Fig. 1(b) and (c) show the solid and boundary repre-
sentations of a silhouette. To characterize the changes of the object
appearance, we can compute the difference between two consecutive
frames, and Fig. 1(d) gives an example difference image. We can also
establish a 2D motion field to describe the movement of the object be-
tween each pair of consecutive frames, as shown in Fig. 1(e). There
is a very large collection of algorithms for obtaining such attributes
in the literature, and we will briefly describe our implementation in
Section 6.

Compiling all silhouette images into a single volume results in a
3D scalar field that we call an extracted object volume. Similarly,
we obtain an object boundary volume and a difference volume, which
are also in the form of 3D scalar fields. The compilation of all 2D
motion fields in a single volumetric structure gives us a motion flow
in the form of a 3D vector field. Given these attribute fields of the
spatiotemporal entity m, we can now consider the creation of different

(a) five frames (No.: 0, 5, 10, 15, 20) selected from a video

(b) silhouette (c) boundary (d) difference (e) motion flow

Fig. 1. Selected frames of a simple up-and-down motion, depicting the
first of the five cycles of the motion, together with examples of its at-
tributes associated with frame 1.
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(a) Type A: silhouette hull (b) Type B: 4-band difference volume (c) Type C: motion flow with glyphs (d) Type D: motion flow with streamlines

Fig. 2. Four types of visual signatures of an up-and-down periodic motion given in Fig. 1.

visual signatures for m.

One can find numerous ways to visualize such scalar and vec-
tor fields individually or in a combinational manner. Without over-
complicating the user study to be discussed in Section 5, we selected
four types of visualization for representing visual signatures. Each
type of visual signature highlights certain attributes of the object in
motion, and reflects the strength of a particular volume or flow visu-
alization technique. All four types of visualization can be synthesized
in real time, for which we will outline the technical framework in Sec-
tion 6. For the following discussions, we chose the horseshoe view [6]
as the primary view representation. In comparison with conventional
viewing angles, it places four faces of a volume, including the start-
ing and finishing frames, in a front view. It also facilitates relatively
more cost-effective use of a rectangular display area, and conveys the
temporal dimension differently from the two spatial dimensions.

4.1 Type A: Temporal Silhouette Extrusion

This type of visual signature displays a projective view of the tempo-
ral silhouette hull of the object in motion. Steady features, such as
background, are filtered away. Fig. 2(a) shows a horseshoe view of
the extracted object volume for the video mentioned in Fig. 1. The
temporal silhouette hull, which is displayed as an opaque object, can
be seen wiggling up and down in a periodic manner.

4.2 Type B: 4-Band Difference Volume

Difference volumes played an important role in [6], where amorphous
visual features rendered using volume raycasting successfully depicted
some motion events in their application examples. However, their use
of transfer functions encoded very limited semantic meaning. For this
work, we designed a special transfer function that highlights the mo-
tion and the temporal change of a silhouette, while using a relatively
smaller amount of bandwidth to convey the change of object appear-
ance (i.e., intensity and texture).

Consider two example frames and their corresponding silhouettes,
Oa and Ob in Fig. 3(a) and (b). We classify pixels in the difference
volume into four groups as shown in 3(c), namely (i) background ( �∈
Oa∧ �∈ Ob), (ii) new pixels ( �∈ Oa∧ ∈ Ob), (iii) disappearing pixels
(∈ Oa∧ �∈ Ob), and (iv) overlapping pixels (∈ Oa∧ ∈ Ob). The actual
difference value of each pixel, which typically results from a change
detection filter, is mapped to one of the four bands according to the
group that the pixel belongs to. This enables the design of a transfer
function that encodes some semantics in relation to the motion and
geometric change.

For example, Fig. 2(b) was rendered using the transfer function il-
lustrated in Fig. 3(d), which highlights new pixels in nearly-opaque
red and disappearing pixels in nearly-opaque blue, while displaying
overlapping pixels in translucent gray and leaving background pixels
totally transparent. Such a visual signature gives a clear impression
that the object is in motion, and to a certain degree, provides some
visual cues to velocity.

4.3 Type C: Motion Flow with Glyphs

In many video-related applications, the recognition of motion is more
important than that of an object. Hence it is beneficial to enhance the
perception of motion by visualizing the motion flow field associated
with a video. This type of visual signature combines the boundary rep-
resentation of a temporal silhouette hull with arrow glyphs showing the
direction of motion at individual volumetric positions. It is necessary

(a) frames Ia and Ib (b) silhouettes Oa and Ob

(c) 4 semantic bands (d) color mapping

Fig. 3. Two example frames and their corresponding silhouettes. Four
semantic bands can be determined using Oa and Ob, and an appropriate
transfer function can encode semantic meaning according to the bands.

to determine an appropriate density of arrows, as too many would clut-
ter a visual signature, or too few would lead to substantial information
loss. We thereby use a combination of parameters to control the den-
sity of arrows, which will be discussed in Section 6. Fig. 2(c) shows
a Type C visual signature of a sphere in an up-and-down motion. In
this particular visualization, colors of arrows are chosen randomly to
enhance the depth cue of partially occluded arrows by improving their
visual continuity.

Note that there is a major difference between the motion flow field
of a video and typical 3D vector fields considered in flow visualiza-
tion. In a motion flow field, each vector has two spatial components
and one temporal component. The temporal component is normally
set to a constant for all vectors. We experimented with a range of
different constants for the temporal component, and found that a non-
zero constant would confuse the visual perception of the two spatial
components of the vector. We thereby chose to set the temporal com-
ponents of all vectors to zero.

4.4 Type D: Motion Flow with Streamlines

The visibility of arrow glyphs requires them to be displayed in a certain
minimum size, which often leads to the problem of occlusion. One
alternative approach is to use streamlines to depict direction of motion
flow. However, because all temporal components in the motion flow
field are equal to zero, each streamline can only flow within the x-y
plane where the corresponding seed resides, and it seldom flows far.
Hence there is often a dense cluster of short streamlines, making it
difficult to use color for direction indication.

To improve the sense of motion and the perception of direction, we
mapped a zebra-like dichromatic texture to the line geometry, which
moves along the line in the flow direction. Although this can no longer
be considered strictly as a static visualization, it is not in any way try-
ing to recreate an animation of the original video. The dynamics intro-
duced is of a fixed number of steps, which are independent from the
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length of a video. The time requirement for viewing such a visualiza-
tion remains to be O(1). Fig. 2(d) shows a static view of such a visual
signature. The perception of this type of visual signatures normally
improves when the size and resolution of the visualization increases.

5 A USER STUDY ON VISUAL SIGNATURES

The discussions in the previous sections naturally lead to many scien-
tific questions concerning visual signatures. The followings are just a
few examples:

• Can users distinguish different types of spatiotemporal entities
(i.e., types of objects and types of motion individually and in
combination) from their visual signatures?

• If the answer to the above is yes, how easy is it for an ordinary
user to acquire such an ability?

• What kind of attributes are suitable to be featured or highlighted
in visual signatures?

• What is the most effective design of a visual signature, and in
what circumstances?

• What kind of visualization techniques can be used for synthesiz-
ing effective visual signatures?

• How would the variations of camera attributes, such as position
and field of view, affect visual signatures?

• How would the recognition of visual signatures scale in propor-
tion to the number of spatiotemporal entities present?

Almost all of these questions are related to the human factors in vi-
sualization and motion perception. There is no doubt that user studies
must play a part in our search for answers to these questions. As an
integral part of this work, we conducted a user study on visual signa-
tures. Because this is the first user study on visual signatures of objects
in motion, we decided to focus our study on the recognition of types
of motion. We therefore set the main objectives of this user study as:

1. to evaluate the hypothesis that users can learn to recognize mo-
tions from their visual signatures.

2. to obtain a set of data that measures the difficulties and time re-
quirements of a learning process.

3. to evaluate the effectiveness of the above-mentioned four types
of visual signatures.

5.1 Types of Motion

As mentioned before, an abstract visual representation of a video is es-
sentially a 2D projective view of our 4D spatiotemporal world. Visual
signatures of spatiotemporal entities in real life videos can be influ-
enced by numerous factors and appear in various forms. In order to
meet the key objectives of the user study, it was necessary to reduce
the number of parameters to be examined in this scientific process. We
used simulated motions with the following constraints:

• All videos feature only one spherical object in motion. The use
of a sphere minimizes the variations of visual signatures due to
camera positions and perspective projection.

• In each motion, the center of the sphere remains in the same x-y
plane, which minimizes the ambiguity caused by the change of
object size due to perspective projection.

• Since the motion function is known, we computed most attribute
fields analytically. This is similar to an assumption that the
sphere is perfectly textured and lit, and without shadows, which
minimizes the errors in extracting attribute fields using change
detection and motion estimation algorithms.

We consider the following seven types of motion:

1. Motion Case 1: No motion — in which the sphere remains in the
center of the image frame throughout the video.

2. Motion Cases 2-9: Scaling — in which the radius of the sphere
increases by 100%, 75%, 50% and 25%, and decreases by 25%,
50%, 75% and 100% respectively.

3. Motion Cases 10-25: Translation — in which the sphere
moves in a straight line in eight different directions (i.e.,
0◦,45◦,90◦, . . . ,315◦) and two different speeds.

4. Motion Cases 26-34: Spinning — in which the sphere rotates
about the x-axis, y-axis and z-axis, without moving its center,
with 1, 5 and 9 revolutions respectively.

5. Motion Cases 35, 38, 41: Periodic up-and-down translation —
in which the sphere moves upwards and downwards periodically
in three different frequencies, namely 1, 5 and 9 cycles.

6. Motion Cases 36, 39, 42: Periodic left-and-right translation —
in which the sphere moves towards left and right periodically in
three different frequencies, namely 1, 5 and 9 cycles.

7. Motion Cases 37, 40, 43: Periodic rotation — in which the
sphere rotates about the center of the image frame periodically
in three different frequencies, namely 1, 5 and 9 cycles.

The first four types are considered to be elementary motions. The
last three are composite motions which can be decomposed into a se-
ries of simple translation motions in smaller time windows. Five ex-
amples motion cases and their visual signatures can be found in the
accompanying materials.

We did consider to include other composite motions, such as the
periodic scaling, and combined scaling, translation and spinning, but
decided to limit the total number of cases in order to obtain an adequate
number of samples for each case while controlling the time spent by
each observer in the study. We also made a conscious decision not to
include complex motions such as deformation, shearing and fold-over
in this user study.

5.2 The Main User Study

Participants. 69 observers (23 female, 46 male) from the student
community of Swansea University took part in this study. All ob-
servers had normal, or corrected to normal, vision and were given a
£2 book voucher each as a small thank-you gesture for their partic-
ipation. Data from two participants were excluded from analysis as
their response times were more than 3 standard deviations outside of
the mean. Thus, data from 67 (22 female, 45 male) observers were
analyzed.

Tasks. The user study was conducted in 14 sessions over a three week
period. Each session, which involved 4 or 5 observers, started with a
25 minutes oral presentation, given by one of the co-authors of this
paper, with the aid of a set of pre-written slides. The presentation was
followed by a test, typically taking about 20 minutes to complete. A
piece of interactive software was specially written for structuring the
test as well as collecting the results.

The presentation provided an overview of the scientific background
and objectives of this user study, and gave a brief introduction to the
four types of visual signatures, largely in the terminology of a layper-
son (see accompanying materials). It outlined the steps of the test, and
highlighted some potential difficulties and misunderstandings. As part
of a learning process, a total of 10 motions and 11 visual signatures
were shown as examples in the slides.

The test was composed of 24 trials. On each trial, the observer
was presented with between 1 and 4 visual signatures of a motion.
As shown in Fig. 4(a), the task was to identify the underlying motion
pattern by selecting from the 4 alternatives listed at the bottom of the
screen. Both the speed and the accuracy of this response were mea-
sured. As observers were allowed to correct initial responses, the final

(a) identifying motion patterns (b) feedback and evaluation

Fig. 4. Example screenshots of the main two tasks for each trial.
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reaction time was taken from the point when they proceeded to the
next part of the trial.

The second part of the trial was designed to provide feedback and
training for the observers to increase the likelihood of learning. It also
provided a measure of subjective utility, that is, how useful observers
found each type of visual signature. In this part, the underlying motion
clip was shown in full together with all four types of visual signatures
(Fig. 4(b)). The task was to indicate which of the four visual signatures
appeared to provide the most relevant information. No response time
was measured in this part.

At the end of the experiment, observers were also asked to provide
an overall usefulness rating for each type of visual signature. A rating
scale from 1 (least) to 5 (most) effective was used.

Design. The 24 trials in each test were blocked into 4 equal learn-
ing phases (6 trials per phase) in which the amount of available in-
formation was varied. In the initial phase all 4 visual signatures were
presented, providing the full range of information. In each succes-
sive phase, the number of available representations was reduced by
one, so that in the final phase only one visual signature was provided.
This fixed order was imposed so that observers would receive suffi-
cient training before being presented with minimum information. For
each observer a random sub-set of the 43 motion cases was selected
and randomly assigned to the 24 experimental trials. For each case,
the 4 possible options were fixed. The position of options was how-
ever randomized on the screen on an observer by observer basis to
minimize simple response strategies.

5.3 The Supplementary User Study

Since the number of visual signatures available in the main user study
decreased from one phase to another, it may be difficult to know
whether changes in the overall accuracy and response times directly
reflect learning. To address this issue, we conducted a supplementary
user study, where two visual signatures, Types B and C, were made
available throughout the 24 trials. It was organized in a same man-
ner as the main study, and involved 40 observers (14 female, 26 male).
Among them, 17 also took part in the main user study, hence had some
experience of video visualization, with a time lapse of 4-5 months.
The other 23 were first-time observers, with no previous experience in
video visualization.

5.4 Results and Remarks

Analysis of Variance (ANOVA) was used to explore differences be-
tween three or more means, and t-tests were used to directly compare
two means. By convention, F and t values indicate the ratio between
effects of interest and random noise using specific probability distribu-
tions. The probability p of obtaining F or t values, given the statistical
degrees of freedom indicated in parentheses, is also provided, with
values less than 0.05 considered unlikely to occur by chance alone.

Motion Types. Table 1 gives the mean accuracy (in percentage) and
response time (in second) in relation to motion types. There were clear
differences between the types of motion, both in terms of accuracy
(F(4,264) = 34.5, MSE = 5, p < 0.001), and speed (F(4,264) = 12.6,
MSE = 118, p < 0.001).

The scaling condition gave rise to the highest accuracy, clearly
showing that positive identification of motion is possible from visual
signatures. Post-hoc analysis showed that this condition did not lead
to better performance than the trivial static case, but performance was
reliably higher than the other three motion types (all have t > 6.0,
p < 0.001).

Accuracy levels for the translational motions, including the elemen-
tary motion in one direction, and combinational motion with periodi-
cal change of directions did not differ from each other, but were both
significantly above those for spinning motion (t > 2.8, p < 0.01).

The difficulty in recognizing spinning motion appears to arise be-
cause the projection of the sphere in motion maintains the same out-
line and position throughout the motion. For example, the temporal
silhouette hull of Motion Case 31, which is a spinning motion, is iden-
tical to that of Motion Case 1, which is motionless (see accompanying

Table 1. Mean accuracy and response time related to motion types.
Numbers in parentheses are standard errors (se) of the means.

Accuracy (%) Response time (second)

Static 81.2 (4) 19.8 (2)
Scaling 90.3 (2) 13.6 (1)
Translation 66.7 (3) 23.8 (1)
Spinning 49.4 (3) 24.8 (1)
Periodic 62.2 (3) 24.4 (2)

Table 2. Mean accuracy and response time in each phase. The
mean values are listed separately for the main user study, the first- and
second-time groups in the supplementary user study. The standard er-
rors (se) of the means listed are all between 1 and 2.

Accuracy (%) Response time (second)
main sup-1 sup-2 main sup-1 sup-2

Phase 1 66.7 68.1 75.5 30.8 24.7 26.7
Phase 2 70.0 74.6 76.5 22.2 18.9 19.4
Phase 3 72.0 74.3 82.4 17.5 12.0 16.9
Phase 4 63.0 71.7 78.4 13.4 11.2 10.8
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Fig. 5. The decreasing trend of the mean response time of each trial in
both user studies.

materials). This renders Type A visual signature totally ineffective in
differentiating any spinning motion from the motionless state.

Response times, computed only for correct trials, followed a similar
pattern. Here, however, scaling motion did give rise to significantly
better performance than the static case (t(114) = 3.1, p < 0.001), in
addition to the other three moving cases. No other comparisons were
significant.

Phases. Table 2 gives the mean accuracy (in percentage) and re-
sponse time (in second) in each of the four phases. Although the sup-
plementary study was not divided into specific phases, we grouped the
data into 4×6 trials for comparison purposes.

In the main user study, accuracy levels changed significantly across
the four phases (F(3,198) = 2.9, MSE = 3.7, p < 0.05). While there is
a clearly increasing trend across the first 3 phases, this main effect ap-
pears to be due more to the final drop between phases 3 and 4, the only
pair of means to differ significantly (t(132) = 2.23, p < 0.05). This
drop may be due to the reduction of the number of visual signatures
to only one in Phase 4. A single visual signature is often ambiguous,
for example, spinning and static cases share the same Type A visual
signature in our user studies, so this could have inflated error rates.
Another possibility is the lack of a confirmation process based on a
second visual signature.

We should note, however, that a similar trend can also be observed
in the supplementary study, where Types B and C visual signatures
were available throughout the session. Here, though, there was no
main effect of phase. It seems possible that the generally high level
of performance in both of the user studies may well be masking more
subtle learning effects in terms of accuracy. Second time observers
(mean = 78%, se = 2.6) performed slightly better than first time ob-
servers (mean = 72%, se = 2.8). Although this difference did not reach
statistical significance, the trend towards higher performance is still
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Fig. 6. The mean accuracy (with standard errors), measured in each of
the four phases, categorized by the types of motion.
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Fig. 7. The mean response time (with standard errors), measured in
each of the four phases, categorized by the types of motion.
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Fig. 8. The relative preference of each type of visual signature, pre-
sented in the percentage term, and categorized by the types of motion.
The overall preference is also given.

encouraging. Any improvement, after a single prior exposure dating
back several months, can provide some motivation to further explore
long-term learning effects in this context.

In terms of response time, the story is much cleaner. In the main
user study there was a clear effect of phase (F(3,198) = 43.5, MSE =
97.8, p < 0.001), which takes the form of a consistent linear decrease
(F(1,198) = 121.6, MSE = 97.8, p < 0.001). Importantly, exactly
the same pattern is present in the supplementary study, with a main
effect of phase (F(3,114) = 35.2, MSE = 45.1, p < 0.001), driven
by a linear decrease in response time (F(1,114) = 103, MSE = 45.1,
p < 0.001). Thus, within the space of a single experiment, observers
improve their performance even when the number of response options
remains constant. There were no other significant response time ef-
fects in the supplementary study. Figure 5 shows this descreasing trend
over the 24 trials for both user studies.

For the main study, Fig. 6 shows the accuracy in relation to each
type of motion in each phase. We can observe that the spinning motion
seems to benefit more from having multiple visual signatures available
at the same time. The noticeable decrease of the number of positive
identification of the motionless event in Phase 3 may also be caused
by the difficulties in differentiating it from spinning. Fig. 7 shows a
consistent reduction of response time for all types of motion.

Preference. Fig. 8 summarizes the preference of observers in terms
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Fig. 9. The technical pipeline for processing video and synthesizing
abstract visual representations. Data files are shown in pink, software
modules in blue, and hardware-assisted modules in yellow.

of types of visual signatures, which largely reflects the effectiveness
of each type of visual signature. Note that the Type C visual signature
was considered to be the most effective in relation to the spinning mo-
tion, while Type B was generally preferred for other types of motion.

The overall preference (shown on the right of Fig. 8) was calculated
by putting all ‘votes’ together regardless the type of motion involved.
This corresponds reasonably well with the final scores, ranging be-
tween 1 (least) to 5 (most) effective, given by the observers at the
end. The mean scores for the four types of visual signatures are A:2.6,
B:4.0, C:3.6, and D:3.1 (0.14 ≤ se ≤ 0.16 ) respectively.

6 SYNTHESIZING VISUAL SIGNATURES

Fig. 9 shows the overall technical pipeline implemented in this work.
The main development goals for this pipeline were: (i) to extract a va-
riety of intermediate data sets that represent attribute fields of a video.
Such data sets include extracted object volume, difference volume,
boundary volume, and optical flow field; (ii) to synthesize different vi-
sual representations using volume and flow visualization techniques
individually as well as in a combined manner; and (iii) to enable
real-time visualization of deformed video volumes (i.e., the horseshoe
view), and to facilitate interactive specification of viewing parameters
and transfer functions.

The video processing stage of the pipeline focuses on the genera-
tion of appropriate attribute fields, including extracted object volume,
4-band difference volume, object boundary volume, optical flow field,
and seed list. The rendering stage was implemented in C++, using
Direct3D as the graphics API and HLSL as the GPU programming
language. Volume rendering is based on 3D texture slicing. The flow
visualization part is added by rendering opaque geometry that repre-
sents arrows or streamlines. For an 800×600 visualization and a 600
frame video, the volume renderer achieves about 12.9 fps on a 3.4GHz
Pentium 4 PC with an NVIDIA GeForce 7800 GTX graphics board.
Further details can be found in [2].

7 APPLICATION CASE STUDIES

We have applied our understanding and the developed techniques to
a set of video clips collected in the CAVIAR project [10] as bench-
marking problems for computer vision. In particular, we considered a
collection of 28 video clips of the entrance lobby of the INRIA Labs at
Grenoble, France, which were filmed from a similar camera position
using a wide angle lens. Fig. 10(a) shows a typical frame of the col-
lection, with actors highlighted in red, non-acting visitors in yellow.
All videos have the same resolution with 384×288 pixels per frame
and 25 frames per second. As all videos are available in compressed
MPEG2, there is a noticeable amount of noise, which presents a chal-
lenge to the synthesis of meaningful visual representations for these
video clips as well as automatic object recognition in computer vision.

The video clips recorded a variety of scenarios of interest, includ-
ing people walking alone and in group, meeting with others, fighting
and passing out, and leaving a package in a public place. Because the
camera was located at a relatively high position and almost all mo-
tions took place on the ground, the view of the scene exhibits some
similarity to the simulated view used in our user study. It is therefore
appropriate and beneficial to examine the visual signatures of different
types of motion events featured in these videos.

In this work, we tested several change detection algorithms as stud-
ied in [6], and found that the linear difference detection algorithm [8]
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(a) a selected image frame (b) extracted objects

(c) 4-band difference (d) a computed optical flow

Fig. 10. A selected scene from the video ‘Fight OneManDown’ collected
by the CAVIAR project [10], and its associated attributes computed in
the video processing stage.

is most effective for extracting an object representation. As shown in
Fig. 10(b), there is a significant amount of noise at the lower left part
of the image, where the sharp contrast between external lighting and
shadows is especially sensitive to the minor camera movements, in ad-
dition to the noise caused by the lossy compression used in capturing
these video clips. In many video clips, there were also non-acting vis-
itors browsing in that area, resulting in more complicated noise pat-
terns. Using the techniques described in Section 6 and [2], we also
computed a 4-band difference image between each pair of consecutive
frames (Fig. 10(c)), and an optical flow field (Fig. 10(d)).

Fig. 11 shows three different situations involving people leaving
things around in the scene. Firstly, we can recognize the visual signa-
ture of the stationary objects brought into the scene (e.g., a bag or a
box) in Fig. 11(b)-(e). In Type B, the part of motionless track appears
to be colorless, while in Type C, there is no arrow associated with the
track, indicating the lack of motion. In conjunction with the relative
position and thickness of this part of the track, it is possible to deduce
that an object is motionless on the floor.

We can also observe the difference among the three videos from
their visualizations. In (c), the owner appeared to have left the scene
after leaving an object (i.e., a bag) behind. Someone (in fact the owner
himself) later came back to pick up the object. In (d), an object (i.e.,
a bag) was left only for a short period, and the owner was never far
from it. In (e), the object (i.e., a box) was left in the scene for a long
period, and the owner also appeared to walk away from the object in
an unusual pattern.

Fig. 12 shows the visualization of two other video clips in the
CAVIAR collection [10]. In the ‘Fight OneManDown’ video, two ac-
tors first walked towards each other, then fought. One actor knocked
the other down, and left the scene. From the visualization, we can
identify the movements of people, including the two actors and some
other non-acting visitors. We can also recognize the visual signature
for the motion when one of the actor was on the floor as part of the
track is associated with with very few arrows. This hence indicates the
lack of motion. In conjunction with the relative position of this part
of the track, it is possible to deduce that a person is motionless on the
floor. We can observe a similar visual signature in part of the track in
Fig. 12(c).

Visual signatures of spatiotemporal entities in real life videos can
be influenced by numerous factors and appear in various forms. Such
diversity does not in any way undermine the feasibility of video visu-
alization, and on the contrary, it rather strengthens the argument for
involving the ‘bandwidth’ of the human eyes and intelligence in the

loop. The above examples can be seen as further evidence showing
the benefits of video visualization.

8 CONCLUSIONS

We have presented a broad study of visual signatures in video visu-
alization. We have successfully introduced flow visualization to as-
sist in depicting motion features in visual signatures. We found that
the flow-based visual signatures were essential to the recognition of
certain types of motion, such as spinning, though they appeared to
demand more display bandwidth and more effort from observers. In
particular, in our field trial, combined volume and flow visualization
was shown to be the most effective means for conveying the underly-
ing motion actions in real-life videos.

We have conducted a user study that provided us with an extensive
set of useful data about human factors in video visualization. In par-
ticular, we have obtained the first set of evidence showing that human
observers can learn to recognize types of motion from their visual sig-
natures. Considering that most observers had little knowledge about
visualization technology in general, over 80% of them gained 50% or
above success rate within a 45 minute learning process. The reduction
of response time within a session is significant, while the improvement
of accuracy may possibly gain through experiencing video visualiza-
tion regularly over a period. Some of the findings obtained in this user
study indicate the possibility that perspective projection in a video may
not necessarily be a major barrier, since human observers can recog-
nize size changes at ease. We are conducting further user studies in
this area.

We have designed and implemented a pipeline for supporting the
studies on video visualization. Through this work we have also ob-
tained some first-hand evaluation as to the effectiveness of different
video processing techniques and visualization techniques.
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