224 research outputs found
The Experience of Menarche
Four Canadian females, whose respective ages were 15, 17,
37 and 65 years, were interviewed in order to obtain a phenomenologically based
descriptive profile of the experience of menarche. The shared partem of
menarcheal experience was characterized under six thematic categories:
Orientation and preparation, initial trauma, cultural context, the body, social
relationships, and self image. The data suggested that positive aspects of
menarche are lost in continuing taboos and avoidance. The treatment of menarche
as an unfortunate intrusion into a woman's life has negative effects upon her
social and personality development. The opportunity to situate menarche
positively as part of initiation into womanhood is missed.On a interviewé quatre Canadiennes, âgées respectivement de
15, 17, 37 et 65 ans, pour obtenir un profil descriptif phénoménologique de
l'expérience de l'apparition des premières règles. Les éléments communs i cette
expérience ont été caractérisés dans six catégories thématiques: les conseils
d'orientation et la préparation, le traumatisme initial, le contexte culturel,
le corps, les relations sociales et l'image de soi. Les données semblent
indiquer que l'on oublie les aspects positifs de la première menstruation à
cause de la persistance des tabous et du silence. Traiter l'apparition des
premières règles comme une intrusion regrettable dans la vie d'une femme a des
effets négatifs sur son développement social et personnel. On n'a pas su
profiter de la possibilité d'intégrer heureusement cette expérience dans
l'initiation à la vie féminine
Evidence for long-term Gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057
HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray
sources which appear to be point-like within experimental resolution. It is
possibly associated with the massive Be star MWC 148 and has been suggested to
resemble known TeV binary systems like LS I +61 303 or LS 5039. HESS J0632+057
was observed by VERITAS for 31 hours in 2006, 2008 and 2009. During these
observations, no significant signal in gamma rays with energies above 1 TeV was
detected from the direction of HESS J0632+057. A flux upper limit corresponding
to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data.
The non-detection by VERITAS excludes with a probability of 99.993% that HESS
J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations
with Swift XRT reveal a factor of 1.8+-0.4 higher flux in the 1-10 keV range
than earlier X-ray observations of HESS J0632+057. The variability in the
gamma-ray and X-ray fluxes supports interpretation of the ob ject as a
gamma-ray emitting binary.Comment: 8 pages, 3 figures, Accepted for publication in The Astrophysical
Journa
A connection between star formation activity and cosmic rays in the starburst galaxy M 82
Although Galactic cosmic rays (protons and nuclei) are widely believed to be
dominantly accelerated by the winds and supernovae of massive stars, definitive
evidence of this origin remains elusive nearly a century after their discovery
[1]. The active regions of starburst galaxies have exceptionally high rates of
star formation, and their large size, more than 50 times the diameter of
similar Galactic regions, uniquely enables reliable calorimetric measurements
of their potentially high cosmic-ray density [2]. The cosmic rays produced in
the formation, life, and death of their massive stars are expected to
eventually produce diffuse gamma-ray emission via their interactions with
interstellar gas and radiation. M 82, the prototype small starburst galaxy, is
predicted to be the brightest starburst galaxy in gamma rays [3, 4]. Here we
report the detection of >700 GeV gamma rays from M 82. From these data we
determine a cosmic-ray density of 250 eV cm-3 in the starburst core of M 82, or
about 500 times the average Galactic density. This result strongly supports
that cosmic-ray acceleration is tied to star formation activity, and that
supernovae and massive-star winds are the dominant accelerators.Comment: 18 pages, 4 figures; published in Nature; Version is prior to
Nature's in-house style editing (differences are minimal
Gamma-ray observations of Tycho's SNR with VERITAS and Fermi
High-energy gamma-ray emission from supernova remnants (SNRs) has provided a
unique perspective for studies of Galactic cosmic-ray acceleration. Tycho's SNR
is a particularly good target because it is a young, type Ia SNR that is
well-studied over a wide range of energies and located in a relatively clean
environment. Since the detection of gamma-ray emission from Tycho's SNR by
VERITAS and Fermi-LAT, there have been several theoretical models proposed to
explain its broadband emission and high-energy morphology. We report on an
update to the gamma-ray measurements of Tycho's SNR with 147 hours of VERITAS
and 84 months of Fermi-LAT observations, which represents about a factor of two
increase in exposure over previously published data. About half of the VERITAS
data benefited from a camera upgrade, which has made it possible to extend the
TeV measurements toward lower energies. The TeV spectral index measured by
VERITAS is consistent with previous results, but the expanded energy range
softens a straight power-law fit. At energies higher than 400 GeV, the
power-law index is . It
is also softer than the spectral index in the GeV energy range, , measured by this study using
Fermi--LAT data. The centroid position of the gamma-ray emission is coincident
with the center of the remnant, as well as with the centroid measurement of
Fermi--LAT above 1 GeV. The results are consistent with an SNR shell origin of
the emission, as many models assume. The updated spectrum points to a lower
maximum particle energy than has been suggested previously.Comment: Accepted for publication in The Astrophysical Journa
VERITAS Upper Limit on the VHE Emission from the Radio Galaxy NGC 1275
The recent detection by the Fermi gamma-ray space telescope of high-energy
gamma-rays from the radio galaxy NGC 1275 makes the observation of the very
high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly
interesting, especially for the understanding of active galactic nuclei (AGN)
with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently
observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE
gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence
level upper limit of 2.1% of the Crab Nebula flux level is obtained at the
decorrelation energy of approximately 340 GeV, corresponding to 19% of the
power-law extrapolation of the Fermi Large Area Telescope (LAT) result.Comment: Accepted for publication in ApJ Letter
The 2HWC HAWC Observatory Gamma Ray Catalog
We present the first catalog of TeV gamma-ray sources realized with the
recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the
most sensitive wide field-of-view TeV telescope currently in operation, with a
1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an
instantaneous field of view >1.5 sr and >90% duty cycle, it continuously
surveys and monitors the sky for gamma ray energies between hundreds GeV and
tens of TeV.
HAWC is located in Mexico at a latitude of 19 degree North and was completed
in March 2015. Here, we present the 2HWC catalog, which is the result of the
first source search realized with the complete HAWC detector. Realized with 507
days of data and represents the most sensitive TeV survey to date for such a
large fraction of the sky. A total of 39 sources were detected, with an
expected contamination of 0.5 due to background fluctuation. Out of these
sources, 16 are more than one degree away from any previously reported TeV
source. The source list, including the position measurement, spectrum
measurement, and uncertainties, is reported. Seven of the detected sources may
be associated with pulsar wind nebulae, two with supernova remnants, two with
blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa
Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory
The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been
used for the past 25 years as a reference source in TeV astronomy, for
calibration and verification of new TeV instruments. The High Altitude Water
Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe
the Crab Nebula at high significance across nearly the full spectrum of
energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view,
nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC's
sensitivity improves with the gamma-ray energy. Above 1 TeV the
sensitivity is driven by the best background rejection and angular resolution
ever achieved for a wide-field ground array.
We present a time-integrated analysis of the Crab using 507 live days of HAWC
data from 2014 November to 2016 June. The spectrum of the Crab is fit to a
function of the form . The data is well-fit with values of
, , and
log when
is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the
systematic errors in this HAWC measurement is discussed and estimated to be
50\% in the photon flux between 1 and 37 TeV.
Confirmation of the Crab flux serves to establish the HAWC instrument's
sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of
current-generation observatories and open a new view of 2/3 of the sky above 10
TeV.Comment: Submitted 2017/01/06 to the Astrophysical Journa
- …