1,499 research outputs found

    Model independent constraints from vacuum and in-medium QCD Sum Rules

    Get PDF
    We discuss QCD sum rule constraints based on moments of vector meson spectral distributions in the vacuum and in a nuclear medium. Sum rules for the two lowest moments of these spectral distributions do not suffer from uncertainties related to QCD condensates of dimension higher than four. We exemplify these relations for the case of the omega meson and discuss the issue of in-medium mass shifts from this viewpoint.Comment: 6 pages, 2 figures, to appear in Eur. Phys. J.

    Tropospheric ozone and CO over North Atlantic for the past decade

    Get PDF
    We investigate how declines in US emissions of CO and O3 precursors have impacted the lower free troposphere over the North Atlantic. We use seasonal observations for O3 and CO from the PICO-NARE project for the period covering 2001 to 2010. Observations are used to verify model output generated by the GEOS-Chem 3-D global chemical transport model. Additional satellite data for CO from AIRS/Aqua and for O3 from TES/Aura were also used to provide additional comparisons; particularly for fall, winter, and spring when PICO-NARE coverage is sparse. We find GEOS-Chem captures the seasonal cycle for CO and O3 well compared to PICO-NARE data. For CO, GEOS-Chem is biased low, particularly in spring which is in agreement with findings from previous studies. GEOS-Chem is 24.7 +/- 5.2 ppbv (1-σ) low compared to PICO-NARE summer CO data while AIRS is 14.2 +/- 6.6 ppbv high. AIRS does not show nearly as much variation as seen with GEOS-Chem or the Pico data, and goes from being lower than PICO-NARE data in winter and spring, to higher in summer and fall. Both TES and GEOS-Chem match the seasonal ozone cycle well for all seasons when compared with observations. Model results for O3 show GEOS-Chem is 6.67 +/- 2.63 ppbv high compared to PICO-NARE summer measurements and TES was 3.91 +/- 4.2 ppbv higher. Pico data, model results, and AIRS all show declines in CO and O3 for the summer period from 2001 to 2010. Limited availability of TES data prevents us from using it in trend analysis. For summer CO Pico, GEOS-Chem, and AIRS results show declines of 1.32, 0.368, and 0.548 ppbv/year respectively. For summer O3, Pico and GEOS-Chem show declines of -0.726 and -0.583 ppbv/year respectively. In other seasons, both model and AIRS show declining CO, particularly in the fall. GEOS-Chem results show a fall decline of 0.798 ppbv/year and AIRS shows a decline of 0.8372 ppbv/year. Winter and spring CO declines are 0.393 and 0.307 for GEOS-Chem, and 0.455 and 0.566 for AIRS. GEOS-Chem shows declining O3 in other seasons as well; with fall being the season of greatest decrease and winter being the least. Model results for fall, winter, and spring are 0.856, 0.117, and 0.570 ppbv/year respectively. Given the availability of data we are most confident in summer results and thus find that summer CO and O3 have declined in lower free troposphere of the North Atlantic region of the Azores. Sensitivity studies for CO and O3 at Pico were conducted by turning off North American fossil fuel emissions in GEOS-Chem. Model results show that North America fossil fuel emissions contribute 8.57 ppbv CO and 4.03 ppbv O3 to Pico. The magnitude of modeled trends declines in all seasons without North American fossil fuel emissions except for summer CO. The increase in summer CO declines may be due to a decline of 5.24 ppbv/year trend in biomass burning emissions over the study period; this is higher than the 2.33 ppbv/year North American anthropogenic CO model decline. Winter O3 is the only season which goes from showing a negative trend to a positive trend

    Crooning : Crooning Lullabys

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1254/thumbnail.jp

    Effect of contact pressure on porcine postmortem brain tissue impedance

    Get PDF

    Comparison of Temperature-Dependent Hadronic Current Correlation Functions Calculated in Lattice Simulations of QCD and with a Chiral Lagrangian Model

    Get PDF
    The Euclidean-time hadronic current correlation functions, GP(Ï„,T)G_P(\tau, T) and GV(Ï„,T)G_V(\tau, T), of pseudoscalar and vector currents have recently been calculated in lattice simulations of QCD and have been used to obtain the corresponding spectral functions. We have used the Nambu-Jona-Lasinio (NJL) model to calculate such spectral functions, as well as the Euclidean-time correlators, and have made a comparison to the lattice results for the correlators. We find evidence for the type of temperature dependence of the NJL coupling parameters that we have used in previous studies of the mesonic confinement-deconfinement transition. We also see that the spectral functions obtained when using the maximum-entropy-method (MEM) and the lattice data differ from the spectral functions that we calculate in our chiral model. However, our results for the Euclidean-time correlators are in general agreement with the lattice results, with better agreement when our temperature-dependent coupling parameters are used than when temperature-independent parameters are used for the NJL model. We also discuss some additional evidence for the utility of temperature-dependent coupling parameters for the NJL model. For example, if the constituent quark mass at T=0 is 352MeV352 {MeV} in the chiral limit, the transition temperature is Tc=208MeVT_c=208 {MeV} for the NJL model with a standard momentum cutoff parameter. (If a Gaussian momentum cutoff is used, we find Tc=225MeVT_c=225 {MeV} in the chiral limit, with m=368MeVm=368 {MeV} at T=0.) The introduction of a weak temperature dependence for the coupling constant will move the value of TcT_c into the range 150-170 MeV, which is more in accord with what is found in lattice simulations of QCD with dynamical quarks

    Gradients of glucose metabolism regulate morphogen signalling required for specifying tonotopic organisation in the chicken cochlea

    Get PDF
    In vertebrates with elongated auditory organs, mechanosensory hair cells (HCs) are organised such that complex sounds are broken down into their component frequencies along a proximal-to-distal long (tonotopic) axis. Acquisition of unique morphologies at the appropriate position along the chick cochlea, the basilar papilla, requires that nascent HCs determine their tonotopic positions during development. The complex signalling within the auditory organ between a developing HC and its local niche along the cochlea is poorly understood. Using a combination of live imaging and NAD(P)H fluorescence lifetime imaging microscopy, we reveal that there is a gradient in the cellular balance between glycolysis and the pentose phosphate pathway in developing HCs along the tonotopic axis. Perturbing this balance by inhibiting different branches of cytosolic glucose catabolism disrupts developmental morphogen signalling and abolishes the normal tonotopic gradient in HC morphology. These findings highlight a causal link between graded morphogen signalling and metabolic reprogramming in specifying the tonotopic identity of developing HCs
    • …
    corecore