582 research outputs found

    Advertising, consensus, and ageing in multilayer Sznajd model

    Full text link
    In the Sznajd consensus model on the square lattice, two people who agree in their opinions convince their neighbours of this opinion. We generalize it to many layers representing many age levels, and check if still a consensus among all layers is possible. Advertising sometimes but not always produces a consensus on the advertised opinion.Comment: 6 pages including 4 figures, for Int. J. Mod. Phys.

    Diffusing opinions in bounded confidence processes

    Get PDF
    We study the effects of diffusing opinions on the Deffuant et al. model for continuous opinion dynamics. Individuals are given the opportunity to change their opinion, with a given probability, to a randomly selected opinion inside an interval centered around the present opinion. We show that diffusion induces an order-disorder transition. In the disordered state the opinion distribution tends to be uniform, while for the ordered state a set of well defined opinion clusters are formed, although with some opinion spread inside them. If the diffusion jumps are not large, clusters coalesce, so that weak diffusion favors opinion consensus. A master equation for the process described above is presented. We find that the master equation and the Monte-Carlo simulations do not always agree due to finite-size induced fluctuations. Using a linear stability analysis we can derive approximate conditions for the transition between opinion clusters and the disordered state. The linear stability analysis is compared with Monte Carlo simulations. Novel interesting phenomena are analyzed

    Treating some solid state problems with the Dirac equation

    Full text link
    The ambiguity involved in the definition of effective-mass Hamiltonians for nonrelativistic models is resolved using the Dirac equation. The multistep approximation is extended for relativistic cases allowing the treatment of arbitrary potential and effective-mass profiles without ordering problems. On the other hand, if the Schrodinger equation is supposed to be used, our relativistic approach demonstrate that both results are coincidents if the BenDaniel and Duke prescription for the kinetic-energy operator is implemented. Applications for semiconductor heterostructures are discussed.Comment: 06 pages, 5 figure

    Exact solution of Schrodinger equation for modified Kratzer's molecular potential with the position-dependent mass

    Full text link
    Exact solutions of Schrodinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied. PACS numbers: 03.65.-w; 03.65.Ge; 12.39.Fd Keywords: Morse potential, Kratzer potential, Position-dependent mass, Point canonical transformation, Effective mass Schr\"{o}dinger equation.Comment: 9 page

    Local Manipulation of Nuclear Spin in a Semiconductor Quantum Well

    Get PDF
    The shaping of nuclear spin polarization profiles and the induction of nuclear resonances are demonstrated within a parabolic quantum well using an externally applied gate voltage. Voltage control of the electron and hole wave functions results in nanometer-scale sheets of polarized nuclei positioned along the growth direction of the well. RF voltages across the gates induce resonant spin transitions of selected isotopes. This depolarizing effect depends strongly on the separation of electrons and holes, suggesting that a highly localized mechanism accounts for the observed behavior.Comment: 18 pages, 4 figure

    Effect of weak magnetic field on polariton-electron scattering in semiconductor microcavities

    Full text link
    We theoretically calculate the polariton linewidth associated with the polariton-electron scattering in a microcavity in presence of a magnetic field perpendicular to the microcavity plane. It is shown that the polariton linewidth oscillates as a function of the magnetic field magnitude and the polariton-electron scattering rate can be not only decreased but also increased by the magnetic field. The possible applications of such an effect are discussed.Comment: LaTex, 6 pages, 3 figure

    A squeeze-like operator approach to position-dependent mass in quantum mechanics

    Get PDF
    We provide a squeeze-like transformation that allows one to remove a position dependent mass from the Hamiltonian. Methods to solve the Schr\"{o}dinger equation may then be applied to find the respective eigenvalues and eigenfunctions. As an example, we consider a position-dependent-mass that leads to the integrable Morse potential and therefore to well-known solutions

    Conductance distributions of 1D-disordered wires at finite temperature and bias voltage

    Full text link
    We calculate the distribution of the conductance G in a one-dimensional disordered wire at finite temperature T and bias voltage V in a independent-electron picture and assuming full coherent transport. At high enough temperature and bias voltage, where several resonances of the system contribute to the conductance, the distribution P(G(T,V)) can be represented with good accuracy by autoconvolutions of the distribution of the conductance at zero temperature and zero bias voltage. The number of convolutions depends on T and V. In the regime of very low T and V, where only one resonance is relevant to G(T,V), the conductance distribution is analyzed by a resonant tunneling conductance model. Strong effects of finite T and V on the conductance distribution are observed and well described by our theoretical analysis, as we verify by performing a number of numerical simulations of a one-dimensional disordered wire at different temperatures, voltages, and lengths of the wire. Analytical estimates for the first moments of P(G(T,V)) at high temperature and bias voltage are also provided.Comment: 9 pages, 7 figures, Submitted to PR

    Strongly Correlated Two-Electron Transport in a Quantum Waveguide Having a Single Anderson Impurity

    Full text link
    The strongly correlated two-electron transport in one-dimensional channel coupled with an Anderson-type impurity is solved exactly via a Bethe ansatz approach. We show that the transport properties are fundamentally different for spin singlet and triplet states, thus the impurity acts as a novel filter that operates based on the total spin angular momentum of the electron pairs, but not individual spins. The filter provides a deterministic generation of electron entanglement in spin, as well as energy and momentum space.Comment: 12 pages, 3 figure
    • …
    corecore