1,695 research outputs found

    On the equatorial Pacific response to the 1982/1983 EI Nino—Southern Oscillation event

    Get PDF
    The ocean\u27s response to the 1982/83 EI Nino—Southern Oscillation event was the largest ever documented. In this paper we explore the effects of certain details of the observed zonal wind stress anomaly field upon the ocean\u27s response using a linear, adiabatic, reduced gravity, analytical model. The increase in magnitude of the downwelling response over the composite of previous EI Nino events is attributed to the eastward translation of the observed westerly wind anomaly and the double peaked downwelling at the South American coast is attributed to the amplitude modulation of this anomaly. Effects of an easterly anomaly which appeared to the west of the dateline midway through the event are also considered

    A Linear Analysis of Equatorial Atlantic Ocean Thermocline Variability

    Get PDF
    Observed variations in the Atlantic Ocean\u27s equatorial thermocline are compared at four locations with simultations using an analytical reduced-gravity model. The comparison shows the essential features of the seasonal wind-forced thermocline response to be accounted for by a linear superposition of equatorial long waves, evolving basinwide, tending to bring the zonal pressure gradient into balance with the wind stress. A frequency response function is derived whose properties provide a basis for discussing the large scale features of the equatorial Atlantic Ocean\u27s seasonal cycle-for example, its evolution along the equator, the maximum upwelling region observed in the Gulf of Guinea and the secondary upwelling season also observed there. Clarification is also given to the issue of remote versus local forcing for these features

    Probing the size of extra dimension with gravitational wave astronomy

    Full text link
    In Randall-Sundrum II (RS-II) braneworld model, it has been conjectured according to the AdS/CFT correspondence that brane-localized black hole (BH) larger than the bulk AdS curvature scale ℓ\ell cannot be static, and it is dual to a four dimensional BH emitting the Hawking radiation through some quantum fields. In this scenario, the number of the quantum field species is so large that this radiation changes the orbital evolution of a BH binary. We derived the correction to the gravitational waveform phase due to this effect and estimated the upper bounds on ℓ\ell by performing Fisher analyses. We found that DECIGO/BBO can put a stronger constraint than the current table-top result by detecting gravitational waves from small mass BH/BH and BH/neutron star (NS) binaries. Furthermore, DECIGO/BBO is expected to detect 105^5 BH/NS binaries per year. Taking this advantage, we found that DECIGO/BBO can actually measure ℓ\ell down to ℓ=0.33μ\ell=0.33 \mum for 5 year observation if we know that binaries are circular a priori. This is about 40 times smaller than the upper bound obtained from the table-top experiment. On the other hand, when we take eccentricities into binary parameters, the detection limit weakens to ℓ=1.5μ\ell=1.5 \mum due to strong degeneracies between ℓ\ell and eccentricities. We also derived the upper bound on ℓ\ell from the expected detection number of extreme mass ratio inspirals (EMRIs) with LISA and BH/NS binaries with DECIGO/BBO, extending the discussion made recently by McWilliams. We found that these less robust constraints are weaker than the ones from phase differences.Comment: 19 pages, 10 figures. Published in PRD, typos corrected, references and footnotes adde

    Comparison of the X-TRACK altimetry estimated currents with moored ADCP and HF radar observations on the West Florida Shelf

    Full text link
    The performance of coastal altimetry over a wide continental shelf is assessed using multiple-year ocean current observations by moored Acoustic Doppler Current Profilers (ADCP) and high frequency (HF) radar on the West Florida Shelf. Across track, surface geostrophic velocity anomalies, derived from the XTRACK along-track sea level anomalies are compared with the near surface current vector components from moored ADCP observations at mid shelf. The altimeter derived velocity anomalies are also directly compared with the HF radar surface current vector radial components that are aligned perpendicular to the satellite track. Preliminary results indicate the potential usefulness of the along-track altimetry data in contributing to descriptions of the surface circulation on the West Florida Shelf and the challenges of such applications. On subtidal time scales, the root mean square difference (rmsd) between the estimated and the observed near surface velocity component anomalies is 8 11 cms-1, which is about the same magnitude as the standard deviations of the velocity components themselves. Adding a wind-driven Ekman velocity component generally helps to reduce the rmsd values

    Detecting very-high-frequency relic gravitational waves by electromagnetic wave polarizations in a waveguide

    Full text link
    The polarization vector (PV) of an electromagnetic wave (EW) will experience a rotation in a region of spacetime perturbed by gravitational waves (GWs). Based on this idea, Cruise's group has built an annular waveguide to detect GWs. We give detailed calculations of the rotations of the polarization vector of an EW caused by incident GWs from various directions and in various polarization states, and then analyze the accumulative effects on the polarization vector when the EW passes n cycles along the annular waveguide. We reexamine the feasibility and limitation of this method to detect GWs of high frequency around 100 MHz, in particular, the relic gravitational waves (RGWs). By comparing the spectrum of RGWs in the accelerating universe with the detector sensitivity of the current waveguide, it is found that the amplitude of the RGWs is too low to be detected by the waveguide detectors currently running. Possible ways of improvements on detection are discussed also.Comment: 18pages, 10 figures, accepted by ChJA

    Neutron star properties in a chiral SU(3) model

    Full text link
    We investigate various properties of neutron star matter within an effective chiral SU(3)L×SU(3)RSU(3)_L \times SU(3)_R model. The predictions of this model are compared with a Walecka-type model. It is demonstrated that the importance of hyperon degrees are strongly depending on the interaction used, even if the equation of state near saturation density is nearly the same in both models. While the Walecka-type model predicts a strange star core with strangeness fraction fS≈4/3f_S \approx 4/3, the chiral model allows only for fS≈1/3f_S \approx 1/3 and predicts that Σ0\Sigma^0, Σ+\Sigma^+ and Ξ0\Xi^0 will not exist in star, in contrast to the Walecka-type model.Comment: 13 pages, Revtex, 5 figs include

    The Madison plasma dynamo experiment: a facility for studying laboratory plasma astrophysics

    Get PDF
    The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic (MHD) instabilities and other high-β\beta phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets which create an axisymmetric multicusp that contains ∼\sim14 m3^{3} of nearly magnetic field free plasma that is well confined and highly ionized (>50%)(>50\%). At present, 8 lanthanum hexaboride (LaB6_6) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating (ECH) power is planned for additional electron heating. The LaB6_6 cathodes are positioned in the magnetized edge to drive toroidal rotation through J×B{\bf J}\times{\bf B} torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm>1000Rm > 1000, and an adjustable fluid Reynolds number 10<Re<100010< Re <1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (MA2=(M_A^2=(v//vA)2>1_A)^2 > 1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action.Comment: 14 pages, 13 figure

    Northwest Africa (NWA) 8785, an EL3 Chondrite with FeO-Rich Matrix

    Get PDF
    The enstatite (E) chondrites are enigmatic but important for understanding the evolution of the terrestrial planets. They have highly reduced mineral assemblages in which enstatite (near pure in compostion) is the dominant silicate, metal is abundant and contains >2.5 wt. % Si in some EH3s, elements which are generally lithophile in most chondrites occur as sulfide and some E3s contain nitrides and carbides. Notably, stable isotope compositions are similar to the Earth-Moon. Aside from E chondrite clasts in the Kaidun breccia, the enstaite chondrites are dry, lacking evidence of ever having hydrous minerals, distinguishing them from most other chondrite groups and suggesting they formed relatively close to the sun, inside of the snow line. Compared to other chondrite groups, the E3s are also matrix-poor, with EH3s having ~4-12 vol. % and EL3s 5 vol % matrix. Here we present a study of NWA 8785, a remarkable new EL3 chondrite with an FeO-rich, fine-grained matrix. Our goals are to understand E chondrite matrix and the evolution and alteration history of the EL3 parent body

    US IOOS coastal and ocean modeling testbed: Inter-model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico

    Get PDF
    A Gulf of Mexico performance evaluation and comparison of coastal circulation and wave models was executed through harmonic analyses of tidal simulations, hindcasts of Hurricane Ike (2008) and Rita (2005), and a benchmarking study. Three unstructured coastal circulation models (ADCIRC, FVCOM, and SELFE) validated with similar skill on a new common Gulf scale mesh (ULLR) with identical frictional parameterization and forcing for the tidal validation and hurricane hindcasts. Coupled circulation and wave models, SWAN+ADCIRC and WWMII+SELFE, along with FVCOM loosely coupled with SWAN, also validated with similar skill. NOAA\u27s official operational forecast storm surge model (SLOSH) was implemented on local and Gulf scale meshes with the same wind stress and pressure forcing used by the unstructured models for hindcasts of Ike and Rita. SLOSH\u27s local meshes failed to capture regional processes such as Ike\u27s forerunner and the results from the Gulf scale mesh further suggest shortcomings may be due to a combination of poor mesh resolution, missing internal physics such as tides and nonlinear advection, and SLOSH\u27s internal frictional parameterization. In addition, these models were benchmarked to assess and compare execution speed and scalability for a prototypical operational simulation. It was apparent that a higher number of computational cores are needed for the unstructured models to meet similar operational implementation requirements to SLOSH, and that some of them could benefit from improved parallelization and faster execution speed

    Semi-Analytic Stellar Structure in Scalar-Tensor Gravity

    Full text link
    Precision tests of gravity can be used to constrain the properties of hypothetical very light scalar fields, but these tests depend crucially on how macroscopic astrophysical objects couple to the new scalar field. We develop quasi-analytic methods for solving the equations of stellar structure using scalar-tensor gravity, with the goal of seeing how stellar properties depend on assumptions made about the scalar coupling at a microscopic level. We illustrate these methods by applying them to Brans-Dicke scalars, and their generalization in which the scalar-matter coupling is a weak function of the scalar field. The four observable parameters that characterize the fields external to a spherically symmetric star (the stellar radius, R, mass, M, scalar `charge', Q, and the scalar's asymptotic value, phi_infty) are subject to two relations because of the matching to the interior solution, generalizing the usual mass-radius, M(R), relation of General Relativity. We identify how these relations depend on the microscopic scalar couplings, agreeing with earlier workers when comparisons are possible. Explicit analytical solutions are obtained for the instructive toy model of constant-density stars, whose properties we compare to more realistic equations of state for neutron star models.Comment: 39 pages, 9 figure
    • …
    corecore