239 research outputs found

    Temperature dependence of the hydrogen bond network in Trimethylamine N-oxide and guanidine hydrochloride - water solutions

    Full text link
    We present an X-ray Compton scattering study on aqueous Trimethylamine N-oxide (TMAO) and guanidine hydrochloride solutions (GdnHCl) as a function of temperature. Independent from the concentration of the solvent, Compton profiles almost resemble results for liquid water as a function of temperature. However, The number of hydrogen bonds per water molecule extracted from the Compton profiles suggests a decrease of hydrogen bonds with rising temperatures for all studied samples, the differences between water and the solutions are weak. Nevertheless, the data indicate a reduced bond weakening with rising TMAO concentration up to 5M of 7.2% compared to 8 % for pure water. In contrast, the addition of GdnHCl appears to behave differently for concentrations up to 3.1 M with a weaker impact on the temperature response of the hydrogen bond structure

    Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA

    Get PDF
    Processing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid-liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. Previously, we identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly; in vivo; (Mugler et al., 2016). Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly,; in vivo; PB dynamics can be recapitulated; in vitro; , since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs

    The Nature of SN 1961V

    Full text link
    The nature of SN 1961V has been uncertain. Its peculiar optical light curve and slow expansion velocity are similar to those of super-outbursts of luminous blue variables (LBVs), but its nonthermal radio spectral index and declining radio luminosity are consistent with decades-old supernovae (SNe). We have obtained Hubble Space Telescope STIS images and spectra of the stars in the vicinity of SN 1961V, and find Object 7 identified by Filippenko et al. to be the closest to the optical and radio positions of SN 1961V. Object 7 is the only point source detected in our STIS spectra and only its H-alpha emission is detected; it cannot be the SN or its remnant because of the absence of forbidden lines. While the H-alpha line profile of Object 7 is remarkably similar to that of eta Car, the blue color (similar to an A2Ib supergiant) and lack of appreciable variability are unlike known post-outburst LBVs. We have also obtained Very Long Baseline Array (VLBA) observations of SN 1961V at 18 cm. The non-detection of SN 1961V places a lower limit on the size of the radio-emitting region, 7.6 mas or 0.34 pc, which implies an average expansion velocity in excess of 4,400 km/s, much higher than the optical expansion velocity measured in 1961. We conclude the following: (1) A SN occurred in the vicinity of SN 1961V a few decades ago. (2) If the SN 1961V light maximum originates from a giant eruption of a massive star, Object 7 is the most probable candidate for the survivor, but its blue color and lack of significant variability are different from a post-outburst eta Car. (3) The radio SN and Object 7 could be physically associated with each other through a binary system. (4) Object 7 needs to be monitored to determine its nature and relationship to SN 1961V.Comment: 16 pages, 3 figures, accepted by the Astronomical Journal for the 2004 May issu

    The designability of protein switches by chemical rescue of structure: mechanisms of inactivation and reactivation

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/ja407644b.The ability to selectively activate function of particular proteins via pharmacological agents is a longstanding goal in chemical biology. Recently, we reported an approach for designing a de novo allosteric effector site directly into the catalytic domain of an enzyme. This approach is distinct from traditional chemical rescue of enzymes in that it relies on disruption and restoration of structure, rather than active site chemistry, as a means to achieve modulate function. However, rationally identifying analogous de novo binding sites in other enzymes represents a key challenge for extending this approach to introduce allosteric control into other enzymes. Here we show that mutation sites leading to protein inactivation via tryptophan-to-glycine substitution and allowing (partial) reactivation by the subsequent addition of indole are remarkably frequent. Through a suite of methods including a cell-based reporter assay, computational structure prediction and energetic analysis, fluorescence studies, enzymology, pulse proteolysis, x-ray crystallography and hydrogen-deuterium mass spectrometry we find that these switchable proteins are most commonly modulated indirectly, through control of protein stability. Addition of indole in these cases rescues activity not by reverting a discrete conformational change, as we had observed in the sole previously reported example, but rather rescues activity by restoring protein stability. This important finding will dramatically impact the design of future switches and sensors built by this approach, since evaluating stability differences associated with cavity-forming mutations is a far more tractable task than predicting allosteric conformational changes. By analogy to natural signaling systems, the insights from this study further raise the exciting prospect of modulating stability to design optimal recognition properties into future de novo switches and sensors built through chemical rescue of structure

    Quantum control of hybrid nuclear-electronic qubits

    Full text link
    Pulsed magnetic resonance is a wide-reaching technology allowing the quantum state of electronic and nuclear spins to be controlled on the timescale of nanoseconds and microseconds respectively. The time required to flip either dilute electronic or nuclear spins is orders of magnitude shorter than their decoherence times, leading to several schemes for quantum information processing with spin qubits. We investigate instead the novel regime where the eigenstates approximate 50:50 superpositions of the electronic and nuclear spin states forming "hybrid nuclear-electronic" qubits. Here we demonstrate quantum control of these states for the first time, using bismuth-doped silicon, in just 32 ns: this is orders of magnitude faster than previous experiments where pure nuclear states were used. The coherence times of our states are five orders of magnitude longer, reaching 4 ms, and are limited by the naturally-occurring 29Si nuclear spin impurities. There is quantitative agreement between our experiments and no-free-parameter analytical theory for the resonance positions, as well as their relative intensities and relative Rabi oscillation frequencies. In experiments where the slow manipulation of some of the qubits is the rate limiting step, quantum computations would benefit from faster operation in the hybrid regime.Comment: 20 pages, 8 figures, new data and simulation

    Climate change promotes parasitism in a coral symbiosis.

    Get PDF
    Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change
    corecore