69 research outputs found

    Regulatory T cells promote myelin regeneration in the central nervous system

    Get PDF
    Regeneration of CNS myelin involves differentiation of oligodendrocytes from oligodendrocyte progenitor cells. In multiple sclerosis, remyelination can fail despite abundant oligodendrocyte progenitor cells, suggesting impairment of oligodendrocyte differentiation. T cells infiltrate the CNS in multiple sclerosis, yet little is known about T cell functions in remyelination. We report that regulatory T cells (Treg_{reg}) promote oligodendrocyte differentiation and (re)myelination. Treg_{reg}-deficient mice exhibited substantially impaired remyelination and oligodendrocyte differentiation, which was rescued by adoptive transfer of Treg_{reg}. In brain slice cultures, Treg_{reg} accelerated developmental myelination and remyelination, even in the absence of overt inflammation. Treg_{reg} directly promoted oligodendrocyte progenitor cell differentiation and myelination in vitro. We identified CCN3 as a Treg_{reg}-derived mediator of oligodendrocyte differentiation and myelination in vitro. These findings reveal a new regenerative function of Treg_{reg} in the CNS, distinct from immunomodulation. Although the cells were originally named 'Treg_{reg}' to reflect immunoregulatory roles, this also captures emerging, regenerative Treg_{reg} functions.This work was supported by the Biotechnology and Biological Sciences Research Council (BB/J01026X/1 and BB/N003721/1, to D.C.F.), The Leverhulme Trust (ECF-2014-390, to Y.D.), QUB (QUB - Lucy McGuigan Bequest, to D.C.F.), The UK Multiple Sclerosis Society (941 and 50, to R.J.M.F. and C.Z.), MRC UK Regenerative Medicine platform (MR/KO26666/1, to A.C.W.), University of Edinburgh Wellcome Trust Multi User Equipment Grant (WT104915MA, to A.C.W.), by a core support grant from the Wellcome Trust and MRC to the Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute (097922/Z/11/Z to R.J.M.F.), studentship support from Dept. for the Economy (Northern Ireland) and British Pathological Society, US National Multiple Sclerosis Society (RG5203A4, to J.R.C.), NIH/NINDS (NS095889, to J.R.C.), NIH/NIGMS IRACDA Postdoctoral Fellowship (K12GM081266, to S.R.M.) and Wellcome Trust (110138/Z/15/Z, to D.C.F.)

    Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain

    Get PDF
    RNA splicing is a key mechanism linking genetic variation with psychiatric disorders. Splicing profiles are particularly diverse in brain and difficult to accurately identify and quantify. We developed a new approach to address this challenge, combining long-range PCR and nanopore sequencing with a novel bioinformatics pipeline. We identify the full-length coding transcripts of CACNA1C in human brain. CACNA1C is a psychiatric risk gene that encodes the voltage-gated calcium channel CaV1.2. We show that CACNA1C’s transcript profile is substantially more complex than appreciated, identifying 38 novel exons and 241 novel transcripts. Importantly, many of the novel variants are abundant, and predicted to encode channels with altered function. The splicing profile varies between brain regions, especially in cerebellum. We demonstrate that human transcript diversity (and thereby protein isoform diversity) remains under-characterised, and provide a feasible and cost-effective methodology to address this. A detailed understanding of isoform diversity will be essential for the translation of psychiatric genomic findings into pathophysiological insights and novel psychopharmacological targets

    Screening is Just the Beginning: Follow-Up Issues in EHDI

    No full text

    Cost analysis of TEOAE-based universalnewborn hearing screening

    No full text
    Although more and more hospitals are implementing universal newborn hearing screening programs, there is still very little information available about the costs of newborn hearing screening programs. The few articles which have been published evaluate technologies or protocols which are no longer used, are incomplete, or are based on hypothetical estimates of the costs and time necessary to do screening. After briefly reviewing the extant literature, this article describes a cost analysis of a TEOAE-based universal newborn hearing screening program. Reasons why the cost per baby ($7.42) is lower than in previous reports are explained, and the benefits of having accurate cost analysis data are summarized

    Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis.

    No full text
    Background: Given the demonstrated utility of Third Generation Sequencing [Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT)] long reads in many studies, a comprehensive analysis and comparison of their data quality and applications is in high demand. Methods: Based on the transcriptome sequencing data from human embryonic stem cells, we analyzed multiple data features of PacBio and ONT, including error pattern, length, mappability and technical improvements over previous platforms. We also evaluated their application to transcriptome analyses, such as isoform identification and quantification and characterization of transcriptome complexity, by comparing the performance of size-selected PacBio, non-size-selected ONT and their corresponding Hybrid-Seq strategies (PacBio+Illumina and ONT+Illumina). Results: PacBio shows overall better data quality, while ONT provides a higher yield. As with data quality, PacBio performs marginally better than ONT in most aspects for both long reads only and Hybrid-Seq strategies in transcriptome analysis. In addition, Hybrid-Seq shows superior performance over long reads only in most transcriptome analyses. Conclusions: Both PacBio and ONT sequencing are suitable for full-length single-molecule transcriptome analysis. As this first use of ONT reads in a Hybrid-Seq analysis has shown, both PacBio and ONT can benefit from a combined Illumina strategy. The tools and analytical methods developed here provide a resource for future applications and evaluations of these rapidly-changing technologies.</p
    • …
    corecore