175 research outputs found

    The vitamin D receptor polymorphism in the translation initiation codon is a risk factor for insulin resistance in glucose tolerant Caucasians

    Get PDF
    BACKGROUND: Although vitamin D receptor (VDR) polymorphisms have been shown to be associated with abnormal glucose metabolism, the reported polymorphisms are unlikely to have any biological consequences. The VDR gene has two potential translation initiation sites. A T-to-C polymorphism has been noted in the first ATG (f allele), abolishing the first translation initiation site and resulting in a peptide lacking the first three amino acids (F allele). We examined the role of this polymorphism in insulin sensitivity and beta cell function. This study included 49 healthy Caucasian subjects (28 females, age 28 ± 1 years old, body mass index 24.57 ± 0.57 kg/m(2), waist-hip ratio 0.81 ± 0.01 cm/cm). They were all normotensive (less than 140/90 mmHg) and glucose tolerant, which was determined by a standard 75-gm oral glucose tolerance test. Their beta cell function (%B) and insulin sensitivity (%S) were calculated based on the Homeostasis Model Assessment (HOMA). Their genotypes were determined by a polymerase chain reaction-restriction fragment length polymorphism analysis. Phenotypes were compared between genotypic groups. RESULTS: There were 18 FF, 21 Ff, and 10 ff subjects. Since only 10 ff subjects were identified, they were pooled with the Ff subjects during analyses. The FF and Ff/ff groups had similar glucose levels at each time point before and after a glucose challenge. The Ff/ff group had higher insulin levels than the FF group at fasting (P=0.006), 30 minutes (P=0.009), 60 minutes (P=0.049), and 90 minutes (P=0.042). Furthermore, the Ff/ff group also had a larger insulin area under the curve than the FF group (P=0.009). While no difference was noted in %B, the Ff/ff group had a lower %S than the FF group (0.53 vs. 0.78, P=0.006). A stepwise regression analysis confirmed that the Fok I polymorphism was an independent determinant for %S, accounting for 29.3% of variation in %S when combined with waist-hip ratio. CONCLUSIONS: We report that the Fok I polymorphism at the VDR gene locus is associated with insulin sensitivity, but has no influence on beta cell function in healthy Caucasians. Although this polymorphism has been shown to affect the activation of vitamin D-dependent transcription, the molecular basis of the association between this polymorphism and insulin resistance remains to be determined

    Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations

    Get PDF
    Alterations in intrauterine programming occurring during critical periods of development have adverse consequences for whole-organ systems or individual tissue functions in later life. In this paper, we show that rat embryonic neural stem cells (NSCs) exposed to the synthetic glucocorticoid dexamethasone (Dex) undergo heritable alterations, possibly through epigenetic mechanisms. Exposure to Dex results in decreased NSC proliferation, with no effects on survival or differentiation, and changes in the expression of genes associated with cellular senescence and mitochondrial functions. Dex upregulates cell cycle-related genes p16 and p21 in a glucocorticoid receptor(GR)-dependent manner. The senescence-associated markers high mobility group (Hmg) A1 and heterochromatin protein 1 (HP1) are also upregulated in Dex-exposed NSCs, whereas Bmi1 (polycomb ring finger oncogene) and mitochondrial genes Nd3 (NADH dehydrogenase 3) and Cytb (cytochrome b) are downregulated. The concomitant decrease in global DNA methylation and DNA methyltransferases (Dnmts) suggests the occurrence of epigenetic changes. All these features are retained in daughter NSCs (never directly exposed to Dex) and are associated with a higher susceptibility to oxidative stress, as shown by the increased occurrence of apoptotic cell death on exposure to the redox-cycling reactive oxygen species (ROS) generator 2,3-dimethoxy-1-naphthoquinone (DMNQ). Our study provides novel evidence for programming effects induced by glucocorticoids (GCs) on NSCs and supports the idea that fetal exposure to endogenous or exogenous GCs is likely to result in long-term consequences that may predispose to neurodevelopmental and/or neurodegenerative disorders

    Correlates of sunscreen use among high school students: a cross-sectional survey

    Get PDF
    Abstract Background Adolescents put themselves at risk of later skin cancer development and accelerated photo-aging due to their high rates of ultraviolet radiation exposure and low rates of skin protection. The purpose of the current study was to determine which of the Integrative Model constructs are most closely associated with sunscreen use among high school students. Methods The current study of 242 high school students involved a survey based on the Integrative Model including demographic and individual difference factors, skin protection-related beliefs and outcome evaluations, normative beliefs, self-efficacy, sunscreen cues and availability, intentions, and sunscreen use. Our analyses included multiple linear regressions and bootstrapping to test for mediation effects. Results Sunscreen use was significantly associated with female gender, greater skin sensitivity, higher perceived sunscreen benefits, higher skin protection importance, more favorable sunscreen user prototype, stronger skin protection norms, greater perceived skin protection behavioral control, and higher sunscreen self-efficacy. Intentions to use sunscreen mediated the relationships between most skin protection-related beliefs and sunscreen use. Conclusions The current study identified specific variables that can be targeted in interventions designed to increase sunscreen use among adolescents.</p

    Detection of Resistance Mutations to Antivirals Oseltamivir and Zanamivir in Avian Influenza A Viruses Isolated from Wild Birds

    Get PDF
    The neuraminidase (NA) inhibitors oseltamivir and zanamivir are the first-line of defense against potentially fatal variants of influenza A pandemic strains. However, if resistant virus strains start to arise easily or at a high frequency, a new anti-influenza strategy will be necessary. This study aimed to investigate if and to what extent NA inhibitor–resistant mutants exist in the wild population of influenza A viruses that inhabit wild birds. NA sequences of all NA subtypes available from 5490 avian, 379 swine and 122 environmental isolates were extracted from NCBI databases. In addition, a dataset containing 230 virus isolates from mallard collected at Ottenby Bird Observatory (Öland, Sweden) was analyzed. Isolated NA RNA fragments from Ottenby were transformed to cDNA by RT-PCR, which was followed by sequencing. The analysis of genotypic profiles for NAs from both data sets in regard to antiviral resistance mutations was performed using bioinformatics tools. All 6221 sequences were scanned for oseltamivir- (I117V, E119V, D198N, I222V, H274Y, R292K, N294S and I314V) and zanamivir-related mutations (V116A, R118K, E119G/A/D, Q136K, D151E, R152K, R224K, E276D, R292K and R371K). Of the sequences from the avian NCBI dataset, 132 (2.4%) carried at least one, or in two cases even two and three, NA inhibitor resistance mutations. Swine and environmental isolates from the same data set had 18 (4.75%) and one (0.82%) mutant, respectively, with at least one mutation. The Ottenby sequences carried at least one mutation in 15 cases (6.52%). Therefore, resistant strains were more frequently found in Ottenby samples than in NCBI data sets. However, it is still uncertain if these mutations are the result of natural variations in the viruses or if they are induced by the selective pressure of xenobiotics (e.g., oseltamivir, zanamivir)

    Quantitative trace analysis of a broad range of antiviral drugs in poultry muscle using column-switch liquid chromatography coupled to tandem mass spectrometry

    Get PDF
    A liquid chromatography–tandem mass spectrometry method for the analysis of seven antiviral drugs, zanamivir, ribavirin, oseltamivir, oseltamivir carboxylate, amantadine, rimantadine and arbidol, in poultry muscle is reported. The antiviral drugs were extracted from the homogenized poultry muscle sample using methanol. The extract was purified using tandem solid-phase extraction combining a cation exchange cartridge and a phenylboronic acid cartridge. To prevent excessive matrix effects, the analytes were separated from the matrix constituents using a column-switch liquid chromatography system combining a reversed-phase and a Hypercarb analytical column. Detection was carried out using tandem mass spectrometry. The method was fully validated according to 2002/657/EC [1] and proved to be adequate for quantification and confirmation of zanamivir and ribavirin at 10 μg kg−1, oseltamivir, oseltamivir carboxylate, amantadine and rimantadine at levels below 1.0 μg kg−1 and for qualitative confirmatory analysis of arbidol at levels below 1 μg kg−1

    Oseltamivir–Resistant Pandemic H1N1/2009 Influenza Virus Possesses Lower Transmissibility and Fitness in Ferrets

    Get PDF
    The neuraminidase (NA) inhibitor oseltamivir offers an important immediate option for the control of influenza, and its clinical use has increased substantially during the recent H1N1 pandemic. In view of the high prevalence of oseltamivir-resistant seasonal H1N1 influenza viruses in 2007–2008, there is an urgent need to characterize the transmissibility and fitness of oseltamivir-resistant H1N1/2009 viruses, although resistant variants have been isolated at a low rate. Here we studied the transmissibility of a closely matched pair of pandemic H1N1/2009 clinical isolates, one oseltamivir-sensitive and one resistant, in the ferret model. The resistant H275Y mutant was derived from a patient on oseltamivir prophylaxis and was the first oseltamivir-resistant isolate of the pandemic virus. Full genome sequencing revealed that the pair of viruses differed only at NA amino acid position 275. We found that the oseltamivir-resistant H1N1/2009 virus was not transmitted efficiently in ferrets via respiratory droplets (0/2), while it retained efficient transmission via direct contact (2/2). The sensitive H1N1/2009 virus was efficiently transmitted via both routes (2/2 and 1/2, respectively). The wild-type H1N1/2009 and the resistant mutant appeared to cause a similar disease course in ferrets without apparent attenuation of clinical signs. We compared viral fitness within the host by co-infecting a ferret with oseltamivir-sensitive and -resistant H1N1/2009 viruses and found that the resistant virus showed less growth capability (fitness). The NA of the resistant virus showed reduced substrate-binding affinity and catalytic activity in vitro and delayed initial growth in MDCK and MDCK-SIAT1 cells. These findings may in part explain its less efficient transmission. The fact that the oseltamivir-resistant H1N1/2009 virus retained efficient transmission through direct contact underlines the necessity of continuous monitoring of drug resistance and characterization of possible evolving viral proteins during the pandemic

    Rivastigmine Lowers Aβ and Increases sAPPα Levels, Which Parallel Elevated Synaptic Markers and Metabolic Activity in Degenerating Primary Rat Neurons

    Get PDF
    Overproduction of amyloid-β (Aβ) protein in the brain has been hypothesized as the primary toxic insult that, via numerous mechanisms, produces cognitive deficits in Alzheimer's disease (AD). Cholinesterase inhibition is a primary strategy for treatment of AD, and specific compounds of this class have previously been demonstrated to influence Aβ precursor protein (APP) processing and Aβ production. However, little information is available on the effects of rivastigmine, a dual acetylcholinesterase and butyrylcholinesterase inhibitor, on APP processing. As this drug is currently used to treat AD, characterization of its various activities is important to optimize its clinical utility. We have previously shown that rivastigmine can preserve or enhance neuronal and synaptic terminal markers in degenerating primary embryonic cerebrocortical cultures. Given previous reports on the effects of APP and Aβ on synapses, regulation of APP processing represents a plausible mechanism for the synaptic effects of rivastigmine. To test this hypothesis, we treated degenerating primary cultures with rivastigmine and measured secreted APP (sAPP) and Aβ. Rivastigmine treatment increased metabolic activity in these cultured cells, and elevated APP secretion. Analysis of the two major forms of APP secreted by these cultures, attributed to neurons or glia based on molecular weight showed that rivastigmine treatment significantly increased neuronal relative to glial secreted APP. Furthermore, rivastigmine treatment increased α-secretase cleaved sAPPα and decreased Aβ secretion, suggesting a therapeutic mechanism wherein rivastigmine alters the relative activities of the secretase pathways. Assessment of sAPP levels in rodent CSF following once daily rivastigmine administration for 21 days confirmed that elevated levels of APP in cell culture translated in vivo. Taken together, rivastigmine treatment enhances neuronal sAPP and shifts APP processing toward the α-secretase pathway in degenerating neuronal cultures, which mirrors the trend of synaptic proteins, and metabolic activity

    Extensive Genetic Diversity, Unique Population Structure and Evidence of Genetic Exchange in the Sexually Transmitted Parasite Trichomonas vaginalis

    Get PDF
    The human parasite Trichomonas vaginalis causes trichomoniasis, the world's most common non-viral sexually transmitted infection. Research on T. vaginalis genetic diversity has been limited by a lack of appropriate genotyping tools. To address this problem, we recently published a panel of T. vaginalis-specific genetic markers; here we use these markers to genotype isolates collected from ten regions around the globe. We detect high levels of genetic diversity, infer a two-type population structure, identify clinically relevant differences between the two types, and uncover evidence of genetic exchange in what was believed to be a clonal organism. Together, these results greatly improve our understanding of the population genetics of T. vaginalis and provide insights into the possibility of genetic exchange in the parasite, with implications for the epidemiology and control of the disease. By taking into account the existence of different types and their unique characteristics, we can improve understanding of the wide range of symptoms that patients manifest and better implement appropriate drug treatment. In addition, by recognizing the possibility of genetic exchange, we are more equipped to address the growing concern of drug resistance and the mechanisms by which it may spread within parasite populations
    corecore