2,331 research outputs found
Laser cooling of a diatomic molecule
It has been roughly three decades since laser cooling techniques produced
ultracold atoms, leading to rapid advances in a vast array of fields.
Unfortunately laser cooling has not yet been extended to molecules because of
their complex internal structure. However, this complexity makes molecules
potentially useful for many applications. For example, heteronuclear molecules
possess permanent electric dipole moments which lead to long-range, tunable,
anisotropic dipole-dipole interactions. The combination of the dipole-dipole
interaction and the precise control over molecular degrees of freedom possible
at ultracold temperatures make ultracold molecules attractive candidates for
use in quantum simulation of condensed matter systems and quantum computation.
Also ultracold molecules may provide unique opportunities for studying chemical
dynamics and for tests of fundamental symmetries. Here we experimentally
demonstrate laser cooling of the molecule strontium monofluoride (SrF). Using
an optical cycling scheme requiring only three lasers, we have observed both
Sisyphus and Doppler cooling forces which have substantially reduced the
transverse temperature of a SrF molecular beam. Currently the only technique
for producing ultracold molecules is by binding together ultracold alkali atoms
through Feshbach resonance or photoassociation. By contrast, different proposed
applications for ultracold molecules require a variety of molecular
energy-level structures. Our method provides a new route to ultracold
temperatures for molecules. In particular it bridges the gap between ultracold
temperatures and the ~1 K temperatures attainable with directly cooled
molecules (e.g. cryogenic buffer gas cooling or decelerated supersonic beams).
Ultimately our technique should enable the production of large samples of
molecules at ultracold temperatures for species that are chemically distinct
from bialkalis.Comment: 10 pages, 7 figure
Ultracold dense gas of deeply bound heteronuclear molecules
Recently, the quest for an ultracold and dense ensemble of polar molecules
has attracted strong interest. Polar molecules have bright prospects for novel
quantum gases with long-range and anisotropic interactions, for quantum
information science, and for precision measurements. However, high-density
clouds of ultracold polar molecules have so far not been produced. Here, we
report a key step towards this goal. Starting from an ultracold dense gas of
heteronuclear 40K-87Rb Feshbach molecules with typical binding energies of a
few hundred kHz and a negligible dipole moment, we coherently transfer these
molecules into a vibrational level of the ground-state molecular potential
bound by >10 GHz. We thereby increase the binding energy and the expected
dipole moment of the 40K-87Rb molecules by more than four orders of magnitude
in a single transfer step. Starting with a single initial state prepared with
Feshbach association, we achieve a transfer efficiency of 84%. While dipolar
effects are not yet observable, the presented technique can be extended to
access much more deeply bound vibrational levels and ultimately those
exhibiting a significant dipole moment. The preparation of an ultracold quantum
gas of polar molecules might therefore come within experimental reach.Comment: 5 pages, 5 figure
A new primary dental care service compared with standard care for child and family to reduce the re-occurrence of childhood dental caries (Dental RECUR): study protocol for a randomised controlled trial
Background: In England and Scotland, dental extraction is the single highest cause of planned admission to the hospital for children under 11 years. Traditional dental services have had limited success in reducing this disease burden. Interventions based on motivational interviewing have been shown to impact positively dental health behaviours and could facilitate the prevention of re-occurrence of dental caries in this high-risk population. The objective of the study is to evaluate whether a new, dental nurse-led service, delivered using a brief negotiated interview based on motivational interviewing, is a more cost-effective service than treatment as usual, in reducing the re-occurrence of dental decay in young children with previous dental extractions. Methods/Design: This 2-year, two-arm, multicentre, randomised controlled trial will include 224 child participants, initially aged 5 to 7 years, who are scheduled to have one or more primary teeth extracted for dental caries under general anaesthesia (GA), relative analgesia (RA: inhalation sedation) or local anaesthesia (LA). The trial will be conducted in University Dental Hospitals, Secondary Care Centres or other providers of dental extraction services across the United Kingdom. The intervention will include a brief negotiated interview (based on the principles of motivational interviewing) delivered between enrolment and 6 weeks post-extraction, followed by directed prevention in primary dental care. Participants will be followed up for 2 years. The main outcome measure will be the dental caries experienced by 2 years post-enrolment at the level of dentine involvement on any tooth in either dentition, which had been caries-free at the baseline assessment. Discussion: The participants are a hard-to-reach group in which secondary prevention is a challenge. Lack of engagement with dental care makes the children and their families scheduled for extraction particularly difficult to recruit to an RCT. Variations in service delivery between sites have also added to the challenges in implementing the Dental RECUR protocol during the recruitment phase. Trial registration: ISRCTN24958829 (date of registration: 27 September 2013), Current protocol version: 5.0
Sisyphus Cooling of Electrically Trapped Polyatomic Molecules
The rich internal structure and long-range dipole-dipole interactions
establish polar molecules as unique instruments for quantum-controlled
applications and fundamental investigations. Their potential fully unfolds at
ultracold temperatures, where a plethora of effects is predicted in many-body
physics, quantum information science, ultracold chemistry, and physics beyond
the standard model. These objectives have inspired the development of a wide
range of methods to produce cold molecular ensembles. However, cooling
polyatomic molecules to ultracold temperatures has until now seemed
intractable. Here we report on the experimental realization of opto-electrical
cooling, a paradigm-changing cooling and accumulation method for polar
molecules. Its key attribute is the removal of a large fraction of a molecule's
kinetic energy in each step of the cooling cycle via a Sisyphus effect,
allowing cooling with only few dissipative decay processes. We demonstrate its
potential by reducing the temperature of about 10^6 trapped CH_3F molecules by
a factor of 13.5, with the phase-space density increased by a factor of 29 or a
factor of 70 discounting trap losses. In contrast to other cooling mechanisms,
our scheme proceeds in a trap, cools in all three dimensions, and works for a
large variety of polar molecules. With no fundamental temperature limit
anticipated down to the photon-recoil temperature in the nanokelvin range, our
method eliminates the primary hurdle in producing ultracold polyatomic
molecules. The low temperatures, large molecule numbers and long trapping times
up to 27 s will allow an interaction-dominated regime to be attained, enabling
collision studies and investigation of evaporative cooling toward a BEC of
polyatomic molecules
First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction
The first measurements of the transferred polarization for the exclusive ep
--> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson
National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron
beam was used to measure the hyperon polarization over a range of Q2 from 0.3
to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass
angular range of the K+ meson. Comparison with predictions of hadrodynamic
models indicates strong sensitivity to the underlying resonance contributions.
A non-relativistic quark model interpretation of our data suggests that the
s-sbar quark pair is produced with spins predominantly anti-aligned.
Implications for the validity of the widely used 3P0 quark-pair creation
operator are discussed.Comment: 6 pages, 4 figure
Onset of asymptotic scaling in deuteron photodisintegration
We investigate the transition from the nucleon-meson to quark-gluon
description of the strong interaction using the photon energy dependence of the
differential cross section for photon energies above 0.5 GeV and
center-of-mass proton angles between and . A possible
signature for this transition is the onset of cross section scaling
with the total energy squared, , at some proton transverse momentum, .
The results show that the scaling has been reached for proton transverse
momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime
is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure
Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic
range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c)
peaks where two nucleons each have 20% or less, and the third nucleon has most
of the transferred energy. These fast pp and pn pairs are back-to-back with
little momentum along the three-momentum transfer, indicating that they are
spectators. Experimental and theoretical evidence indicates that we have
measured distorted two-nucleon momentum distributions by striking the third
nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
Exclusive electroproduction on the proton at CLAS
The reaction has been measured, using the 5.754
GeV electron beam of Jefferson Lab and the CLAS detector. This represents the
largest ever set of data for this reaction in the valence region. Integrated
and differential cross sections are presented. The , and
dependences of the cross section are compared to theoretical calculations based
on -channel meson-exchange Regge theory on the one hand and on quark handbag
diagrams related to Generalized Parton Distributions (GPDs) on the other hand.
The Regge approach can describe at the 30% level most of the features
of the present data while the two GPD calculations that are presented in this
article which succesfully reproduce the high energy data strongly underestimate
the present data. The question is then raised whether this discrepancy
originates from an incomplete or inexact way of modelling the GPDs or the
associated hard scattering amplitude or whether the GPD formalism is simply
inapplicable in this region due to higher-twists contributions, incalculable at
present.Comment: 29 pages, 29 figure
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
- …
