3,160 research outputs found

    Effects of Effluent Disposal on a Forest Ecosystem

    Get PDF

    Differences in peripheral noradrenergic function among actively drinking and abstinent alcohol-dependent individuals.

    Get PDF
    We examined whether excessive alcohol consumption was related to changes in plasma levels of noradrenaline (NA) and whether these changes recover following abstinence. We also explored whether there were differences in NA levels between Type I and Type II alcoholics and controls during active drinking and abstinence. Plasma concentrations of NA were determined in (1) 27 Caucasian men with alcohol dependence who were regularly drinking (active drinkers) within 24 hours of hospitalization, (2) 29 Caucasian alcohol-dependent men who were in remission (abstinent for a minimum of three months), and (3) 28 race- and gender-matched healthy controls. NA concentrations were significantly higher in actively drinking alcohol-dependent subjects compared to those in remission and controls. While Type I and Type II alcoholic individuals differed across clinical measures, NA levels were similar in the two subtypes. Both subtypes showed an elevation in NA levels during active drinking compared to controls, but NA levels did not differ between the two subtypes and controls during remission. The findings indicate that chronic exposure to alcohol may lead to disturbances in NA activity that may manifest in early abstinence. However, the changes in NA activity appears to normalize after a longer period of abstinence. Alterations in NA activity do not seem to be specific for Type I or Type II subtypes of alcoholism

    Quantum Process Tomography of the Quantum Fourier Transform

    Full text link
    The results of quantum process tomography on a three-qubit nuclear magnetic resonance quantum information processor are presented, and shown to be consistent with a detailed model of the system-plus-apparatus used for the experiments. The quantum operation studied was the quantum Fourier transform, which is important in several quantum algorithms and poses a rigorous test for the precision of our recently-developed strongly modulating control fields. The results were analyzed in an attempt to decompose the implementation errors into coherent (overall systematic), incoherent (microscopically deterministic), and decoherent (microscopically random) components. This analysis yielded a superoperator consisting of a unitary part that was strongly correlated with the theoretically expected unitary superoperator of the quantum Fourier transform, an overall attenuation consistent with decoherence, and a residual portion that was not completely positive - although complete positivity is required for any quantum operation. By comparison with the results of computer simulations, the lack of complete positivity was shown to be largely a consequence of the incoherent errors during the quantum process tomography procedure. These simulations further showed that coherent, incoherent, and decoherent errors can often be identified by their distinctive effects on the spectrum of the overall superoperator. The gate fidelity of the experimentally determined superoperator was 0.64, while the correlation coefficient between experimentally determined superoperator and the simulated superoperator was 0.79; most of the discrepancies with the simulations could be explained by the cummulative effect of small errors in the single qubit gates.Comment: 26 pages, 17 figures, four tables; in press, Journal of Chemical Physic

    Shaped nozzles for cryogenic buffer gas beam sources

    Get PDF
    Cryogenic buffer gas beams are important sources of cold molecules. In this work we explore the use of a converging-diverging nozzle with a buffer-gas beam. We find that, under appropriate circumstances, the use of a nozzle can produce a beam with improved collimation, lower transverse temperatures, and higher fluxes per solid angle

    Experimental Implementation of the Quantum Baker's Map

    Full text link
    This paper reports on the experimental implementation of the quantum baker's map via a three bit nuclear magnetic resonance (NMR) quantum information processor. The experiments tested the sensitivity of the quantum chaotic map to perturbations. In the first experiment, the map was iterated forward and then backwards to provide benchmarks for intrinsic errors and decoherence. In the second set of experiments, the least significant qubit was perturbed in between the iterations to test the sensitivity of the quantum chaotic map to applied perturbations. These experiments are used to investigate previous predicted properties of quantum chaotic dynamics.Comment: submitted to PR

    Integration of Dirac-Jacobi structures

    Full text link
    We study precontact groupoids whose infinitesimal counterparts are Dirac-Jacobi structures. These geometric objects generalize contact groupoids. We also explain the relationship between precontact groupoids and homogeneous presymplectic groupoids. Finally, we present some examples of precontact groupoids.Comment: 10 pages. Brief changes in the introduction. References update

    A Volumetric Method for Quantifying Atherosclerosis in Mice by Using MicroCT: Comparison to En Face

    Get PDF
    Precise quantification of atherosclerotic plaque in preclinical models of atherosclerosis requires the volumetric assessment of the lesion(s) while maintaining in situ architecture. Here we use micro-computed tomography (microCT) to detect ex vivo aortic plaque established in three dyslipidemic mouse models of atherosclerosis. All three models lack the low-density lipoprotein receptor (Ldlr−/−), each differing in plaque severity, allowing the evaluation of different plaque volumes using microCT technology. From clearly identified lesions in the thoracic aorta from each model, we were able to determine plaque volume (0.04–3.1 mm3), intimal surface area (0.5–30 mm2), and maximum plaque (intimal-medial) thickness (0.1–0.7 mm). Further, quantification of aortic volume allowed calculation of vessel occlusion by the plaque. To validate microCT for future preclinical studies, we compared microCT data to intimal surface area (by using en face methodology). Both plaque surface area and plaque volume were in excellent correlation between microCT assessment and en face surface area (r2 = 0.99, p<0.0001 and r2 = 0.95, p<0.0001, respectively). MicroCT also identified internal characteristics of the lipid core and fibrous cap, which were confirmed pathologically as Stary type III-V lesions. These data validate the use of microCT technology to provide a more exact empirical measure of ex vivo plaque volume throughout the entire intact aorta in situ for the quantification of atherosclerosis in preclinical models

    Microscopic Selection of Fluid Fingering Pattern

    Full text link
    We study the issue of the selection of viscous fingering patterns in the limit of small surface tension. Through detailed simulations of anisotropic fingering, we demonstrate conclusively that no selection independent of the small-scale cutoff (macroscopic selection) occurs in this system. Rather, the small-scale cutoff completely controls the pattern, even on short time scales, in accord with the theory of microscopic solvability. We demonstrate that ordered patterns are dynamically selected only for not too small surface tensions. For extremely small surface tensions, the system exhibits chaotic behavior and no regular pattern is realized.Comment: 6 pages, 5 figure
    • …
    corecore