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ABSTRACT 

A forest system in the White Mountains of New Hampshire is evaluated 

as to its efficiency to renovate waste effluents. There is neither 

evidence of increased nutrient concentrations in plant components nor 

evidence of increased growth resulting from applications of nutrient 

rich waters. Concentrations of phosphorus increased in the litter and 

soil with a renovation efficiency of 20%. Renovation of other nutrients 

is considerably less. Recommendations are offered for consideration 

prior to establishment of other terrestrial waste disposal sites. 
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MATERIALS AND METHODS 

Domestic sewage from the recreational facilities of Mt. Sunapee 

State Park, Newbury, New Hampshire, is held in septic lagoons for 

aerobic decomposition. The effluent, injected with chlorine (5 mg/liter), 

is pumped to the forest and applied at an average rate of 30 liters/m2 

each spraying day (Frost et al., 1973). In order to evaluate the capacity 

of the forest to incorporate nutrients contained in the effluent, six 

plots (each 0.1 acre, .0405 hectare) were established in the mixed 

deciduous forest. Four of these plots were bisected by the spray lines 

and two were located upslope, in an unsprayed portion of the forest, 

as control plots. 

Trees were identified by species and remeasured annually. Forest 

biomass was estimated from allometric relationships of tree diameter and 

weight of the components (bole, branch, foliage, root) using the relation

ships developed by Whittaker et al. (1974) for a similar forest approximately 

40 kilometers distant. Supplemental root data were obtained from soil 

cores and by excavation of pits. Litter standing crop was measured in 

spring and autumn. Annual fluxes of litter to the forest floor were 

estimated from twelve 1 m2 litter traps. Fluxes of organic matter and 

nutrients from litter to soil were estimated from litter bags and tagged 

branches of assorted size classes on the forest floor. 

Litter and plant components were subsampled, oven dried (70°C.), 

and ground in a Wiley mill at 40 mesh. Soil water solution was collected 

monthly with ceramic cup sampling tubes at 10 and 30 cm depths as was 

thrufall and sprayed effluent. Nutrient analyses of these and soil 

samples were done by the Cooperative Extension Service, Soil Testing and 

Plant Analysis Laboratory, University of Georgia, Athens, Georgia. 

Temperature and precipitation data were obtained from a weather 

station on Mt. Sunaoee. Solar radiation data were available from 

Durham, New Hampshire. Soil moisture tension on spray and control plots 

were monitored with tensiometers. 
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INTRODUCTION 

Land disposal systems for waste water renovation utilize the 

terrestrial ecosystem as a "living filter" by incorporating effluent 

materials into natural biogeochemical cycles. The efficiency of this 

renovation system depends upon 1) increased production of the biotic 

components as greater quantities of nutrients are incorporated into 

biomass, 2) increased nutrient concentrations in the perennial 

components, and 3) increased fixed storage in the soil-litter sub

systems to prevent nutrient rich waters from contaminating groundwater 

supplies. Specific objectives of the study reported here were to 

determine: 

i. rates of production in a forest ecosystem which was being 

utilized for waste water renovation, 

ii. quantities of nutrients, particularly nitrogen and phosphorus, 

in the major components of the ecosystem, 

iii. rates of buildup and transfer of nutrients in and between 

ecosystem components, and 

iv. the seasonality of these fluxes relative to seasonal use of 

the renovation system. 
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RESULTS AND DISCUSSION 

Organization of the following sections relate to the three 

efficiency criteria given above. 

Forest Productivity 

Apportionment of nutrients in the forest depends on both biomass and 

nutrient concentration in ecosystem components. The biomass distribution 

of spray (2.5E05 kg/ha) and control (2.0EOS kg/ha) plots, both in the 

upper range of comparable stands (Rodin and Bazilevich, 1967), is 

summarized in Table 1. Also presented are nutrient pool magnitudes by 

forest component (Table 2). It should be emphasized that the different 

standing pools of organic matter and nutrients for spray and control 

forests do not represent response to effluent application. The important 

parameter is the rate of accretion. The average biomass increment of the 

control plots from 1974 to 1976 was 6279 kg/ha/yr, while on the spray 

plots it was 6032 kg/ha/yr. These slight differences are not significant 

and we are forced to conclude that the efficiency of this renovation 

system has failed the first test. 

In addition, spraying is affecting species composition of the forest 

by increasing white pine mortality. Some of this loss is being countered 

by increased production of other species. Because of the nutrient 

relations of white pine, discussed below, this problem may not be 

excessively severe with reference to renovation. Sopper and Kardos (1973) 

have also reported reduced growth and increased mortality of conifers 

subjected to spraying. 

Nutrient Concentrations in Perennial Components 

High nutrient values characteristic of red oak increase its importance 

to nutrient cycling beyond that which would be indicated by its biomass. 

wbite pine, however, was less important than its very high biomass would 

indicate due to its low nutrient concentrations. Although equal in 

biomass to red maple (30%), white pine contributed only 10% of N to the 

annual cvcle. Forests dominated by oaks have a greater requirement for 
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Table 1. Stand summary statistics (1976). 

~ Control 

Density (stems/ha) 1149 1322 

Standing crop biomass (kg/ha) 251877 200900 

Biomass increment (kg/ha/yr) 6032 6279 

Litterfall (kg/ha/yr) 3888 3729 
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Table 2. Summary of forest organic matter and nutrient pools for effluent treated and 
untreated portions of the forest. 

Component Standing Pool (kg/ha) N p K Ca 
(kg/ha) 

spray control s c s c s c s c 

overstory 
foliage 3304 2926 70 57 63 52 36 33 321 284 
branch 42934 31352 234 166 318 212 232 168 386 229 
bole 140293 110642 259 177 294 189 106 81 8 6 
roott 46752 40140 86 64 98 69 35 29 3 2 

649 464 773 522 409 311 718 521 

understory 
herbaceous 186 71 3 1 .4 . 2 3 1 . 2 . 2 
seedlings 1016 1157 6 7 1 1 4 4 3 3 

9 8 1.4 1. 2 7 5 3.2 3.2 

detritus 
leaf litter 44383 30199 568 459 58 43 186 142 293 230 
branch litter 3326 1697 22 10 4 2 15 8 29 14 
standing dead 34750 25700 70 44 8 3 31 21 1 .8 
down dead 19000 22730 38 39 4 3 17 19 .8 . 7 

698 552 74 51 249 190 324 246 

litterfall 
leaf 3304 2926 24 23 30 30 18 18 360 350 
brancht 584 803 3 4 4 5 3 4 5 6 

27 27 34 35 21 22 365 356 

soil 
0-50 cm depth 11380 10900 102 71 129 157 423 404 

+root nutrient pools calculated from bole nutrient data 
+ 
+assuming no translocation from branches before branch fall 

Mg 

s c 

5 4 
17 15 

22 19 

. 2 .1 

. 4 .4 

.6 . 5 

31 14 
2 1 

33 15 

5 4 

5 4 

66 71 



nutrients, and consequently a greater uptake, than do pine dominated 

forests (Duvigneaud and Desmet, 1975). With this in mind species 

composition should be an important criterion in the selection of an 

effluent disposal site. 

The age of the forest should also be considered in site selection. 

Absence of increased growth accompanying nutrient additions has been 

reported in mature coniferous stands (Holmes and Cousins, 1960; 

Leigbundgit and Richard, 1957) while others (Heilman, 1961; Heilman 

and Gessel, 1963; Mayer-Krapoli, 1956) have observed growth responses 

to nitrogen applications. While little information is available of 

hardwood response to fertilization, Sapper and Kardos (1973) reported 

that applications of high concentrations of elements produced leaf 

concentration differences of N, P, and Mg with no change in K or Ca. 

However, high levels of application and subsequent increased leaf 

concentrations did not greatly increase growth in the mixed oak-red 

maple forest. 

No significant differences of nutrient concentrations in tree 

components were detected and similar seasonal patterns of nutrient 

distributions were evident in all components in both spray and control 

areas. Approximately 1/3 of all nutrients absorbed by trees are released 

in leaf fall (Table 3). With this magnitude of turnover, even if higher 

concentrations had occurred in sprayed trees, a significant amount of 

added nutrient would not be removed and placed in long term storage. 

With no evidence of increased nutrient concentrations in perennial tree 

components, we must conclude that the system has failed the second test 

of efficiency. 

Nutrients in Fixed Storage in the Soil-Litter System 

With little additional long term storage of nutrients in trees, the 

burden of nutrient removal falls to the soil-litter systems. Logically, 

this is the comnonent upon which we must rely when working with crops 

which are not removed from the site. The litter component contains 

approximately 50% of the nutrients in this subsystem. Microbial popula

tions within this layer regulate elemental cycling and are affected bv 

effluent additions to the forest floor. 
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Table 3. Annual nutrient balance. 

N p K Ca Mg 
(kg/ha.yr) 

s c s c s c s c s c 

Increment 55 55 72 68 46 49 69 59 1 1 

Return 27 27 34 35 21 22 365 356 5 4 

Uptake 82 82 106 103 67 71 434 415 6 5 
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An indirect measurement of microbial activity was obtained from 

litter bag studies. While no significant differences were detected in 

annual decay rates of leaf litter or of branch litter between species, 

litter bags placed on site in mid-summer sh.owed slower rates of decomposi

tion on the spray area, suggesting that effluent application is temporarily 

inhibiting litter decomposition and nutrient release. Possible causes of 

this phenomena include reduced microbial activity resulting from abnormally 

high moisture contents of the litter layer, associated reduced oxygen 

(Brandt et al., 1964), and lowering of litter temperature (Richards, 1974). 

The detritus-soil subsystem is the only component which evidences 

differences between effluent treated and non-treated portions of the 

forest (Table 2). Leaf litter on the non-treated area is less than 70% 

of that on the treated area with proportional differences in all nutrients. 

This difference is too large to be totally attributable to the slight 

(non-statistically significant) difference in foliage production and 

annual leaf litter fall and must also reflect changes in decomposition 

associated with effluent applications. Irrespective of the mechanism of 

litter buildup, early concerns that increased water and nutrient availa

bility would stimulate microbial populations and result in rapid removal 

of litter from the forest floor were unfounded. 

Further examination of data presented in Table 2 indicates that, 

with the exception of P, less than 20% difference exists between soil 

nutrient pools on two study areas. Nutrient differences resulting from 

increased retention occur primarily within the detrital component of the 

system, probably in the F layer (the colloidal sized litter particles) 

of the litter layer. Only with regard to P do we see evidence of nutrient 

retention in the soil component. The soil phosphorus pool in the treat

ment area is nearly 50% greater than the control with the top 20 cm of 

soil having approximately twice the available P as the control. 

A simple flow chart (Figure 1) facilitates examination of P 

restitution. In Figure la we consider the control portion of the forest. 

Calculated uptake (Table 3) is 103 kg/ha/yr, with 68 kg incorporated in 

growth increment and 35 kg returned in litterfall. With precipitation 

input tak~n as 0 (Likens et al., 1977), a calculation is made as to the 

minimum weathering rate of parent materials with the additional assumption 

that no P is leached from the system. The P flux from parent material 
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Figure la. Phosphorus cycles in untreated stand and estimation 
of weathering rate assuming no net change in soil P. 
Units 3re in kg/ha and kg/ha/vr. 
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calculated in this manner may also be considered as net influx to the 

soil block irrespective of the efflux magnitude (X) through leaching and 

deep drainage. This value, 68 kg/ha/yr, is then used in the examination 

of P movement in the effluent treated stand, Figure lb. With input of 

53 kg/ha/yr (Table 4), assuming no greater loss of P from the stand than 

normal, there would be an increase in the detritus-soil subsystem equivalent 

to 49 kg/ha/yr. After five years of effluent additions, the soil system 

in the treated portion would contain 245 kg/ha more P than the control 

area. In fact, the difference is only 54 kg/ha, indicating that leaching, 

drainage, and runoff must equal 38 kg/ha/yr, for a renovation efficiency 

of 20%. 

We have been able to demonstrate a degree of renovation for one 

element, P. This, plus the elevated nutrient concentrations in the litter, 

provide partial support for the third criteria of efficiency. Contributing 

to the low degree of renovation efficiency are the factors of shallow soils 

and mass flow during periods of effluent application as evidenced by zero 

tension readings from tensiometers resting on the hardpan layer. 

Saturated flow is not occurring uniformly throughout the soil block; 

rather it is probably restricted to root channels and other localized 

areas of structural non-uniformities. 
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Figure lb. Phosphorus cycles in effluent treated stand and 
estimation of P efflux from the system. 
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Table 4. Nutrient application by waste water. 

N03-N NH4-N p K Ca Mg 
(kg/ha/yr) 

152 336 53 131 76 154 
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SUMMARY AND RECOMMENDATIONS 

An examination of the effluent disposal system at Mt. Sunapee 

State Park, New Hampshire, in light of the efficiency criteria presented 

earlier, suggests the following: 

1) Nutrient and water additions associated with effluent applications 

did not result in increased plant production. 

2) There is no evidence of increased nutrient concentrations in 

perennial tree components. 

3) The effluent treated stand exhibited a greater litter layer with 

concomitant quantities of nutrients than found in the untreated 

stand. 

4) Calculated renovation efficiency for P, the element showing 

greatest retention in the soil-letter subsystem, was only 20%. 

Specific recommendations can be presented from this study which 

should be beneficial in the design of other facilities for land applica

tions of wastes. 

1) Every effort should be made to locate effluent disposal sites 

on soils which have good properties for septic leach fields. 

Selection of the wrong soil type greatly reduces renovation 

efficiency. 

2) If forest systems are to be used for renovation purposes, then 

we recommend that coniferous stands be avoided because of their 

susceptibility to altered soil-water status. 

3) We also recommend that stands in an early stage of growth (the 

log-linear phase) be selected to take advantage of the natural 

period of maximum growth and nutrient incorporation. 

4) If the site is to be used for a long period of time, it is 

imperative that the biological material (trees, grasses, etc.) 

be periodically removed from the site. If this is not done the 

natural intrasystem cycles of nutrients (eg. litterfall) will 

greatly reduce renovation efficiency. ~eeting this requirement 

will also insure satisfying recommendation 3. 

13 



5) We strongly urge consideration of forage crop use. Obvious 

advantages include their greater water and nutrient requirements, 

and that they are annually removed from the site and are cycled 

through cattle or other intermediates prior to man's re-ingestion 

of these nutrients. 

14 
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