771 research outputs found

    I=3/2 KπK \pi Scattering in the Nonrelativisitic Quark Potential Model

    Full text link
    We study I=3/2I=3/2 elastic KπK\pi scattering to Born order using nonrelativistic quark wavefunctions in a constituent-exchange model. This channel is ideal for the study of nonresonant meson-meson scattering amplitudes since s-channel resonances do not contribute significantly. Standard quark model parameters yield good agreement with the measured S- and P-wave phase shifts and with PCAC calculations of the scattering length. The P-wave phase shift is especially interesting because it is nonzero solely due to SU(3)fSU(3)_f symmetry breaking effects, and is found to be in good agreement with experiment given conventional values for the strange and nonstrange constituent quark masses.Comment: 12 pages + 2 postscript figures, Revtex, MIT-CTP-210

    Molecular vibration in cold collision theory

    Full text link
    Cold collisions of ground state oxygen molecules with Helium have been investigated in a wide range of cold collision energies (from 1 μ\muK up to 10 K) treating the oxygen molecule first as a rigid rotor and then introducing the vibrational degree of freedom. The comparison between the two models shows that at low energies the rigid rotor approximation is very accurate and able to describe all the dynamical features of the system. The comparison between the two models has also been extended to cases where the interaction potential He - O2_2 is made artificially stronger. In this case vibration can perturb rate constants, but fine-tuning the rigid rotor potential can alleviate the discrepancies between the two models.Comment: 11 pages, 3 figure

    From double Lie groupoids to local Lie 2-groupoids

    Get PDF
    We apply the bar construction to the nerve of a double Lie groupoid to obtain a local Lie 2-groupoid. As an application, we recover Haefliger's fundamental groupoid from the fundamental double groupoid of a Lie groupoid. In the case of a symplectic double groupoid, we study the induced closed 2-form on the associated local Lie 2-groupoid, which leads us to propose a definition of a symplectic 2-groupoid.Comment: 23 pages, a few minor changes, including a correction to Lemma 6.

    Discrete Variational Optimal Control

    Full text link
    This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher-dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical and a practical examples, e.g. the control of an underwater vehicle, will illustrate the application of the proposed approach.Comment: 30 pages, 6 figure

    More on quantum groups from the the quantization point of view

    Full text link
    Star products on the classical double group of a simple Lie group and on corresponding symplectic grupoids are given so that the quantum double and the "quantized tangent bundle" are obtained in the deformation description. "Complex" quantum groups and bicovariant quantum Lie algebras are discused from this point of view. Further we discuss the quantization of the Poisson structure on symmetric algebra S(g)S(g) leading to the quantized enveloping algebra Uh(g)U_{h}(g) as an example of biquantization in the sense of Turaev. Description of Uh(g)U_{h}(g) in terms of the generators of the bicovariant differential calculus on F(Gq)F(G_q) is very convenient for this purpose. Finally we interpret in the deformation framework some well known properties of compact quantum groups as simple consequences of corresponding properties of classical compact Lie groups. An analogue of the classical Kirillov's universal character formula is given for the unitary irreducible representation in the compact case.Comment: 18 page

    Nonextensivity of the cyclic Lattice Lotka Volterra model

    Full text link
    We numerically show that the Lattice Lotka-Volterra model, when realized on a square lattice support, gives rise to a {\it finite} production, per unit time, of the nonextensive entropy Sq=1ipiqq1S_q= \frac{1- \sum_ip_i^q}{q-1} (S1=ipilnpi)(S_1=-\sum_i p_i \ln p_i). This finiteness only occurs for q=0.5q=0.5 for the d=2d=2 growth mode (growing droplet), and for q=0q=0 for the d=1d=1 one (growing stripe). This strong evidence of nonextensivity is consistent with the spontaneous emergence of local domains of identical particles with fractal boundaries and competing interactions. Such direct evidence is for the first time exhibited for a many-body system which, at the mean field level, is conservative.Comment: Latex, 6 pages, 5 figure

    Quark exchange model for charmonium dissociation in hot hadronic matter

    Full text link
    A diagrammatic approach to quark exchange processes in meson-meson scattering is applied to the case of inelastic reactions of the type (Q\barQ)+(q\barq)\rightarrow (Q\barq) + (q\barQ), where QQ and qq refer to heavy and light quarks, respectively. This string-flip process is discussed as a microscopic mechanism for charmonium dissociation (absorption) in hadronic matter. The cross section for the reaction J/ψ+πD+DˉJ/\psi + \pi \to D+ \bar D is calculated using a potential model, which is fitted to the meson mass spectrum. The temperature dependence of the relaxation time for the \J/Psi distribution in a homogeneous thermal pion gas is obtained. The use of charmonium for the diagnostics of the state of hot hadronic matter produced in ultrarelativistic nucleus-nucleus collisions is discussed.Comment: 24 pages, 3 tables, 7 figure

    Discrete Nonholonomic Lagrangian Systems on Lie Groupoids

    Get PDF
    This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it is necessary to fix a vector subbundle of the Lie algebroid associated to the Lie groupoid. We also discuss the existence of nonholonomic evolution operators in terms of the discrete nonholonomic Legendre transformations and in terms of adequate decompositions of the prolongation of the Lie groupoid. The characterization of the reversibility of the evolution operator and the discrete nonholonomic momentum equation are also considered. Finally, we illustrate with several classical examples the wide range of application of the theory (the discrete nonholonomic constrained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a rotating table and the two wheeled planar mobile robot).Comment: 45 page

    Scaling laws for the 2d 8-state Potts model with Fixed Boundary Conditions

    Full text link
    We study the effects of frozen boundaries in a Monte Carlo simulation near a first order phase transition. Recent theoretical analysis of the dynamics of first order phase transitions has enabled to state the scaling laws governing the critical regime of the transition. We check these new scaling laws performing a Monte Carlo simulation of the 2d, 8-state spin Potts model. In particular, our results support a pseudo-critical beta finite-size scaling of the form beta(infinity) + a/L + b/L^2, instead of beta(infinity) + c/L^d + d/L^{2d}. Moreover, our value for the latent heat is 0.294(11), which does not coincide with the latent heat analytically derived for the same model if periodic boundary conditions are assumed, which is 0.486358...Comment: 10 pages, 3 postscript figure

    Optimal control theory for unitary transformations

    Full text link
    The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory (OCT) is used to solve the inversion problem irrespective of the initial input state. A unified formalism, based on the Krotov method is developed leading to a new scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the X1Σg+X^1\Sigma^+_g electronic state of Na2_2. Raman-like transitions through the A1Σu+A^1\Sigma^+_u electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-shaping techniques of a femtosecond pulse. Out of the schemes studied the square modulus scheme converges fastest. A study of the implementation of the QQ qubit Fourier transform in the Na2_2 molecule was carried out for up to 5 qubits. The classical computation effort required to obtain the algorithm with a given fidelity is estimated to scale exponentially with the number of levels. The observed moderate scaling of the pulse intensity with the number of qubits in the transformation is rationalized.Comment: 32 pages, 6 figure
    corecore