61 research outputs found

    MOG encephalomyelitis: international recommendations on diagnosis and antibody testing

    Get PDF
    Over the past few years, new-generation cell-based assays have demonstrated a robust association of autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis and brainstem encephalitis, as well as with acute disseminated encephalomyelitis (ADEM)-like presentations. Most experts now consider MOG-IgG-associated encephalomyelitis (MOG-EM) a disease entity in its own right, immunopathogenetically distinct from both classic multiple sclerosis (MS) and aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorders (NMOSD). Owing to a substantial overlap in clinicoradiological presentation, MOG-EM was often unwittingly misdiagnosed as MS in the past. Accordingly, increasing numbers of patients with suspected or established MS are currently being tested for MOG-IgG. However, screening of large unselected cohorts for rare biomarkers can significantly reduce the positive predictive value of a test. To lessen the hazard of overdiagnosing MOG-EM, which may lead to inappropriate treatment, more selective criteria for MOG-IgG testing are urgently needed. In this paper, we propose indications for MOG-IgG testing based on expert consensus. In addition, we give a list of conditions atypical for MOG-EM ('red flags') that should prompt physicians to challenge a positive MOG-IgG test result. Finally, we provide recommendations regarding assay methodology, specimen sampling and data interpretation

    Comparison of MRI lesion evolution in different central nervous system demyelinating disorders

    Get PDF
    Background and Objective: There are few studies that compare lesion evolution across different CNS demyelinating diseases, yet knowledge of this may be important for diagnosis and understanding differences in disease pathogenesis. We sought to compare MRI T2-lesion evolution in myelin-oligodendrocyte-glycoprotein-IgG-associated disorder (MOGAD), aquaporin-4-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG-NMOSD), and multiple sclerosis (MS). Methods: In this descriptive study, we retrospectively identified Mayo Clinic patients with MOGAD, AQP4-IgG-NMOSD, or MS and: 1) brain or myelitis attack; 2) available attack MRI within 6 weeks; and 3) follow-up MRI beyond 6 months without interval relapses in that region. Two neurologists identified the symptomatic or largest T2-lesion for each patient (index lesion). MRIs were then independently reviewed by two neuroradiologists blinded to diagnosis to determine resolution of T2-lesions by consensus. The index T2-lesion area was manually outlined acutely and at follow-up to assess variation in size. Results: We included 156 patients (MOGAD, 38; AQP4-IgG-NMOSD, 51; MS, 67) with 172 attacks (brain, 81; myelitis, 91). The age (median [range]) differed between MOGAD (25 [2-74]), AQP4-IgG-NMOSD (53 [10-78]) and MS (37 [16-61]) (p<0.01) and female sex predominated in the AQP4-IgG-NMOSD (41/51 [80%]) and MS (51/67 [76%]) groups but not among those with MOGAD (17/38 [45%]). Complete resolution of the index T2-lesion was more frequent in MOGAD (brain, 13/18[72%]; spine, 22/28[79%]) than AQP4-IgG-NMOSD (brain, 3/21[14%]; spine, 0/34[0%]) and MS (brain, 7/42[17%]; spine, 0/29[0%]), p<0.001. Resolution of all T2-Lesions occurred most often in MOGAD (brain, 7/18[39%]; spine, 22/28[79%]) than AQP4-IgG-NMOSD (brain, 2/21[10%]; spine, 0/34[0%]), and MS (brain, 2/42[5%]; spine, 0/29[0%]), p< 0.01. There was a larger median (range) reduction in T2-lesion area in mm2 on follow-up axial brain MRI with MOGAD (213[55-873]) than AQP4-IgG-NMOSD (104[0.7-597]) (p=0.02) and MS, 36[0-506]) (p< 0.001) and the reductions in size on sagittal spine MRI follow-up in MOGAD (262[0-888]) and AQP4-IgG-NMOSD (309[0-1885]) were similar (p=0.4) and greater than MS (23[0-152]) (p<0.001)

    Clinical and MRI features of Japanese MS patients with NMO-IgG

    Get PDF
    ABSTRACT Background: NMO-IgG is a disease-specific serum marker autoantibody of neuromyelitis optica (NMO) and may distinguish NMO from multiple sclerosis (MS). NMO-IgG has also been frequently detected in Japanese patients with the optic-spinal form of MS (OSMS) suggesting that NMO and OSMS may be the same entity

    Association between B-cell depletion and attack risk in neuromyelitis optica spectrum disorder: An exploratory analysis from N-MOmentum, a double-blind, randomised, placebo-controlled, multicentre phase 2/3 trial

    Get PDF
    BACKGROUND: Inebilizumab is an anti-CD19 antibody approved for the treatment of neuromyelitis optica spectrum disorder (NMOSD) in adults with aquaporin-4 autoantibodies. The relationship between B-cell, plasma-cell (PC), and immunoglobulin depletion with longitudinal reductions in NMOSD activity after inebilizumab treatment was characterised post hoc in an exploratory analysis from the N-MOmentum study (NCT02200770). METHODS: Peripheral blood CD20+ B cells, PC gene signature, and immunoglobulin levels were assessed throughout N-MOmentum (follow-up =2.5 years); correlations with clinical metrics and magnetic resonance imaging (MRI) lesion activity were assessed. FINDINGS: Inebilizumab induced durable B-cell and PC depletion within 1 week versus placebo. Although no association was observed between B-cell counts at time of attack and NMOSD activity, depth of B-cell depletion after the first dosing period correlated with clinical outcomes. All participants receiving inebilizumab demonstrated a robust long-term therapeutic response, and participants with =4 cells/µL after the first 6-month dosing interval had persistently deeper B-cell depletion, lower annualised attack rates (estimated rate [95% CI]: 0.034 [0.024–0.04] vs 0.086 [0.056–0.12]; p = 0.045), fewer new/enlarging T2 MRI lesions (0.49 [0.43–0.56] vs 1.36 [1.12–1.61]; p < 0.0001), and a trend towards decreased Expanded Disability Status Scale worsening (0.076 [0.06–0.10] vs 0.14 [0.10–0.18]; p = 0.093). Antibodies to inebilizumab, although present in a proportion of treated participants, did not alter outcomes. INTERPRETATION: This analysis suggests that compared with placebo, inebilizumab can provide specific, rapid, and durable depletion of B cells in participants with NMOSD. Although deep and persistent CD20+ B-cell depletion correlates with long-term clinical stability, early, deep B-cell depletion correlates with improved disease activity metrics in the first 2 years

    International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.

    Get PDF
    Neuromyelitis optica (NMO) is an inflammatory CNS syndrome distinct from multiple sclerosis (MS) that is associated with serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). Prior NMO diagnostic criteria required optic nerve and spinal cord involvement but more restricted or more extensive CNS involvement may occur. The International Panel for NMO Diagnosis (IPND) was convened to develop revised diagnostic criteria using systematic literature reviews and electronic surveys to facilitate consensus. The new nomenclature defines the unifying term NMO spectrum disorders (NMOSD), which is stratified further by serologic testing (NMOSD with or without AQP4-IgG). The core clinical characteristics required for patients with NMOSD with AQP4-IgG include clinical syndromes or MRI findings related to optic nerve, spinal cord, area postrema, other brainstem, diencephalic, or cerebral presentations. More stringent clinical criteria, with additional neuroimaging findings, are required for diagnosis of NMOSD without AQP4-IgG or when serologic testing is unavailable. The IPND also proposed validation strategies and achieved consensus on pediatric NMOSD diagnosis and the concepts of monophasic NMOSD and opticospinal MS.consensus development conferencejournal articlepractice guidelineresearch support, non-u.s. gov't2015 Jul 142015 06 19importe

    The investigation of acute optic neuritis: a review and proposed protocol

    Full text link

    Variation in MS outcome

    No full text
    The course of multiple sclerosis (MS) is highly variable, manifest by a wide range in age at onset, either relapsing or progressive course from onset, and major differences in attack severity and recovery.1 Not surprisingly, the rate and age at which severe and permanent disabilities are attained are also highly variable. Most of these descriptors of outcome are generally considered independently of one another, as are the clinical and radiologic features of disease; however, certain features cluster and may define unique subtypes of CNS demyelinating disease
    • …
    corecore