4,027 research outputs found

    Who is to blame? The relationship between ingroup identification and relative deprivation is moderated by ingroup attributions

    Get PDF
    Contradictory evidence can be found in the literature about whether ingroup identification and perceived relative deprivation are positively or negatively related. Indeed, theoretical arguments can be made for both effects. It was proposed that the contradictory findings can be explained by considering a hitherto unstudied moderator: The extent to which deprivation is attributed to the ingroup. It was hypothesised that identification would only have a negative impact on deprivation, and that deprivation would only have a negative impact on identification, if ingroup attributions are high. To test this, attributions to the ingroup were experimentally manipulated among British student participants (N = 189) who were asked about their perceived deprivation vis-Ă -vis German students, yield ing support for the hypotheses

    Characterization of potential biomarkers of reactogenicity of licensed antiviral vaccines: randomized controlled clinical trials conducted by the BIOVACSAFE consortium

    Get PDF
    Funding text The authors are grateful for the vital contributions of the participating study volunteers, clinicians, nurses, and laboratory technicians at the Surrey study site. The work by Roberto Leone, laboratory technician at Humanitas Clinical and Research Center, is gratefully acknowledged. Finally, they thank Ellen Oe (GSK) for scientific writing assistance. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n°115308, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in-kind contribution. The contribution of the European Commission to the Advanced Immunization Technologies (ADITEC) project (grant agreement n° 280873) is also gratefully acknowledged. Publisher Copyright: © 2019, The Author(s).Biomarkers predictive of inflammatory events post-vaccination could accelerate vaccine development. Within the BIOVACSAFE framework, we conducted three identically designed, placebo-controlled inpatient/outpatient clinical studies (NCT01765413/NCT01771354/NCT01771367). Six antiviral vaccination strategies were evaluated to generate training data-sets of pre-/post-vaccination vital signs, blood changes and whole-blood gene transcripts, and to identify putative biomarkers of early inflammation/reactogenicity that could guide the design of subsequent focused confirmatory studies. Healthy adults (N = 123; 20–21/group) received one immunization at Day (D)0. Alum-adjuvanted hepatitis B vaccine elicited vital signs and inflammatory (CRP/innate cells) responses that were similar between primed/naive vaccinees, and low-level gene responses. MF59-adjuvanted trivalent influenza vaccine (ATIV) induced distinct physiological (temperature/heart rate/reactogenicity) response-patterns not seen with non-adjuvanted TIV or with the other vaccines. ATIV also elicited robust early (D1) activation of IFN-related genes (associated with serum IP-10 levels) and innate-cell-related genes, and changes in monocyte/neutrophil/lymphocyte counts, while TIV elicited similar but lower responses. Due to viral replication kinetics, innate gene activation by live yellow-fever or varicella-zoster virus (YFV/VZV) vaccines was more suspended, with early IFN-associated responses in naĂŻve YFV-vaccine recipients but not in primed VZV-vaccine recipients. Inflammatory responses (physiological/serum markers, innate-signaling transcripts) are therefore a function of the vaccine type/composition and presence/absence of immune memory. The data reported here have guided the design of confirmatory Phase IV trials using ATIV to provide tools to identify inflammatory or reactogenicity biomarkers.Peer reviewe

    Measurement of the Electric and Magnetic Polarizabilities of the Proton

    Full text link
    The Compton scattering cross section on the proton has been measured at laboratory angles of 90∘^\circ and 135∘^\circ using tagged photons in the energy range 70--100 MeV and simultaneously using untagged photons in the range 100--148~MeV. With the aid of dispersion relations, these cross sections were used to extract the electric and magnetic polarizabilities, αˉ\bar{\alpha} and ÎČˉ\bar{\beta} respectively, of the proton. We find αˉ+ÎČˉ=(15.0±2.9±1.1±0.4)×10−4 fm3,\bar{\alpha}+\bar{\beta} = ( 15.0 \pm 2.9 \pm 1.1 \pm 0.4 ) \times 10^{-4} \: {\rm fm}^3, in agreement with a model-independent dispersion sum rule, and αˉ−ÎČˉ=(10.8±1.1±1.4±1.0)×10−4 fm3,\bar{\alpha}-\bar{\beta} = ( 10.8 \pm 1.1 \pm 1.4 \pm 1.0 ) \times 10^{-4} \: {\rm fm}^3, where the errors shown are statistical, systematic, and model-dependent, respectively. A comparison with previous experiments is given and global values for the polarizabilities are extracted.Comment: 35 pages, 11 PostScript figures, uses RevTex 3.

    Superrevivals in the quantum dynamics of a particle confined in a finite square well potential

    Get PDF
    We examine the revival features in wave packet dynamics of a particle confined in a finite square well potential. The possibility of tunneling modifies the revival pattern as compared to an infinite square well potential. We study the dependence of the revival times on the depth of the square well and predict the existence of superrevivals. The nature of these superrevivals is compared with similar features seen in the dynamics of wavepackets in an anharmonic oscillator potential.Comment: 8 pages in Latex two-column format with 5 figures (eps). To appear in Physical Review

    Collisional and thermal ionization of sodium Rydberg atoms I. Experiment for nS and nD atoms with n=8-20

    Full text link
    Collisional and thermal ionization of sodium nS and nD Rydberg atoms with n=8-20 has been studied. The experiments were performed using a two-step pulsed laser excitation in an effusive atomic beam at atom density of about 2 10^{10} cm^{-3}. Molecular and atomic ions from associative, Penning, and thermal ionization processes were detected. It has been found that the atomic ions were created mainly due to photoionization of Rydberg atoms by photons of blackbody radiation at the ambient temperature of 300K. Blackbody ionization rates and effective lifetimes of Rydberg states of interest were determined. The molecular ions were found to be from associative ionization in Na(nL)+Na(3S) collisions. Rate constants of associative ionization have been measured using an original method based on relative measurements of Na_{2}^{+} and Na^{+} ion signals.Comment: 23 pages, 10 figure

    The constitutive tensor of linear elasticity: its decompositions, Cauchy relations, null Lagrangians, and wave propagation

    Full text link
    In linear anisotropic elasticity, the elastic properties of a medium are described by the fourth rank elasticity tensor C. The decomposition of C into a partially symmetric tensor M and a partially antisymmetric tensors N is often used in the literature. An alternative, less well-known decomposition, into the completely symmetric part S of C plus the reminder A, turns out to be irreducible under the 3-dimensional general linear group. We show that the SA-decomposition is unique, irreducible, and preserves the symmetries of the elasticity tensor. The MN-decomposition fails to have these desirable properties and is such inferior from a physical point of view. Various applications of the SA-decomposition are discussed: the Cauchy relations (vanishing of A), the non-existence of elastic null Lagrangians, the decomposition of the elastic energy and of the acoustic wave propagation. The acoustic or Christoffel tensor is split in a Cauchy and a non-Cauchy part. The Cauchy part governs the longitudinal wave propagation. We provide explicit examples of the effectiveness of the SA-decomposition. A complete class of anisotropic media is proposed that allows pure polarizations in arbitrary directions, similarly as in an isotropic medium.Comment: 1 figur

    Radiative charge transfer lifetime of the excited state of (NaCa)+^+

    Get PDF
    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom--ion trap under high vacuum conditions. The collisional cooling of laser pre-cooled Ca+^+ ions by ultracold Na atoms is being studied. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A1Σ+^1\Sigma^+ state of the (NaCa)+^+ molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using Complete Active Space Self-Consistent field and M\"oller-Plesset second order perturbation theory (CASSCF/MP2) with an extended Gaussian basis, 6-311+G(3df). The semiclassical charge transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition we also present elastic collision cross sections and the spin-exchange cross section. The rate coefficient for charge transfer was found to be 2.3×10−162.3\times 10^{-16} cm3^3/sec, while those for the elastic and spin-exchange cross sections were found to be several orders of magnitude higher (1.1×10−81.1\times 10^{-8} cm3^3/sec and 2.3×10−92.3\times 10^{-9} cm3^3/sec, respectively). This confirms our assumption that the milli-Kelvin regime of collisional cooling of calcium ions by sodium atoms is favorable with the respect to low loss of calcium ions due to the charge transfer.Comment: 4 pages, 5 figures; v.2 - conceptual change

    Review of HBT or Bose-Einstein correlations in high energy heavy ion collisions

    Full text link
    A brief review is given on the discovery and the first five decades of the Hanbury Brown - Twiss effect and its generalized applications in high energy nuclear and particle physics, that includes a meta-review. Interesting and inspiring new directions are also highlighted, including for example source imaging, lepton and photon interferometry, non-Gaussian shape analysis as well as many other new directions. Existing models are compared to two-particle correlation measurements and the so-called RHIC HBT puzzle is resolved. Evidence for a (directional) Hubble flow is presented and the conclusion is confirmed by a successful description of the pseudorapidity dependence of the elliptic flow as measured in Au+Au collisions by the PHOBOS Collaboration.Comment: 14 pages, 1 figure, 8 sub-figures, invited plenary talk at the ICPA-QGP 2005 conference in Kolkata, Indi

    Excitation-assisted inelastic processes in trapped Bose-Einstein condensates

    Full text link
    We find that inelastic collisional processes in Bose-Einstein condensates induce local variations of the mean-field interparticle interaction and are accompanied by the creation/annihilation of elementary excitation. The physical picture is demonstrated for the case of three body recombination in a trapped condensate. For a high trap barrier the production of high energy trapped single particle excitations results in a strong increase of the loss rate of atoms from the condensate.Comment: 4 pages, no figure
    • 

    corecore