1,541 research outputs found

    Axion Protection from Flavor

    Get PDF
    The QCD axion fails to solve the strong CP problem unless all explicit PQ violating, Planck-suppressed, dimension n<10 operators are forbidden or have exponentially small coefficients. We show that all theories with a QCD axion contain an irreducible source of explicit PQ violation which is proportional to the determinant of the Yukawa interaction matrix of colored fermions. Generically, this contribution is of low operator dimension and will drastically destabilize the axion potential, so its suppression is a necessary condition for solving the strong CP problem. We propose a mechanism whereby the PQ symmetry is kept exact up to n=12 with the help of the very same flavor symmetries which generate the hierarchical quark masses and mixings of the SM. This "axion flavor protection" is straightforwardly realized in theories which employ radiative fermion mass generation and grand unification. A universal feature of this construction is that the heavy quark Yukawa couplings are generated at the PQ breaking scale.Comment: 16 pages, 2 figure

    Analyticity, Unitarity and One-loop Graviton Corrections to Compton Scattering

    Full text link
    We compute spin-flip cross section for graviton photoproduction on a spin-1/2 target of finite mass. Using this tree-level result, we find one-loop graviton correction to the spin-flip low-energy forward Compton scattering amplitude by using Gerasimov-Drell-Hearn sum rule. We show that this result agrees with the corresponding perturbative computations, implying the validity of the sum rule at one-loop level, contrary to the previous claims. We discuss possible effects from the black hole production and string Regge trajectory exchange at very high energies. These effects seem to soften the UV divergence present at one-loop graviton level. Finally, we discuss the relation of these observations with the models that involve extra dimensions.Comment: 15 pages, 3 figure

    Vectorlike Confinement at the LHC

    Full text link
    We argue for the plausibility of a broad class of vectorlike confining gauge theories at the TeV scale which interact with the Standard Model predominantly via gauge interactions. These theories have a rich phenomenology at the LHC if confinement occurs at the TeV scale, while ensuring negligible impact on precision electroweak and flavor observables. Spin-1 bound states can be resonantly produced via their mixing with Standard Model gauge bosons. The resonances promptly decay to pseudo-Goldstone bosons, some of which promptly decay to a pair of Standard Model gauge bosons, while others are charged and stable on collider time scales. The diverse set of final states with little background include multiple photons and leptons, missing energy, massive stable charged particles and the possibility of highly displaced vertices in dilepton, leptoquark or diquark decays. Among others, a novel experimental signature of resonance reconstruction out of massive stable charged particles is highlighted. Some of the long-lived states also constitute Dark Matter candidates.Comment: 33 pages, 6 figures. v4: expanded discussion of Z_2 symmetry for stability, one reference adde

    Gravitational waves from merging compact binaries

    Get PDF
    Largely motivated by the development of highly sensitive gravitational-wave detectors, our understanding of merging compact binaries and the gravitational waves they generate has improved dramatically in recent years. Breakthroughs in numerical relativity now allow us to model the coalescence of two black holes with no approximations or simplifications. There has also been outstanding progress in our analytical understanding of binaries. We review these developments, examining merging binaries using black hole perturbation theory, post-Newtonian expansions, and direct numerical integration of the field equations. We summarize these approaches and what they have taught us about gravitational waves from compact binaries. We place these results in the context of gravitational-wave generating systems, analyzing the impact gravitational wave emission has on their sources, as well as what we can learn about them from direct gravitational-wave measurements.Comment: 90 pages, 12 figures. Invited review to appear in Annual Reviews of Astronomy and Astrophysics. Further minor tweaks in response to reader feedbac

    Are intuitions about moral relevance susceptible to framing effects?

    Get PDF
    Various studies have reported that moral intuitions about the permissibility of acts are subject to framing effects. This paper reports the results of a series of experiments which further examine the susceptibility of moral intuitions to framing effects. The main aim was to test recent speculation that intuitions about the moral relevance of certain properties of cases might be relatively resistent to framing effects. If correct, this would provide a certain type of moral intuitionist with the resources to resist challenges to the reliability of moral intuitions based on such framing effects. And, fortunately for such intuitionists, although the results can’t be used to mount a strident defence of intuitionism, the results do serve to shift the burden of proof onto those who would claim that intuitions about moral relevance are problematically sensitive to framing effects

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE

    On The Stability Of Non-Supersymmetric AdS Vacua

    Get PDF
    We consider two infinite families of Non-Supersymmetric AdS4AdS_4 vacua, called Type 2) and Type 3) vacua, that arise in massive IIA supergravity with flux. We show that both families are perturbatively stable. We then examine non-perturbative decays of these vacua to other supersymmetric and non-supersymmetric AdS4AdS_4 vacua mediated by instantons in the thin wall approximation. We find that many decays are ruled out since the tension of the interpolating domain wall is too big compared to the energy difference in AdS units. In fact, within our approximations no decays of Type 2) vacua are allowed, although some decays are only marginally forbidden. This can be understood in terms of a "pairing symmetry" in the landscape which relate Type 2) vacua with supersymmetric ones of the same energy.Comment: 50 pages, Minor changes in section 2.2.

    Dimension-Six Terms in the Standard Model Lagrangian

    Get PDF
    When the Standard Model is considered as an effective low-energy theory, higher dimensional interaction terms appear in the Lagrangian. Dimension-six terms have been enumerated in the classical article by Buchmueller and Wyler [3]. Although redundance of some of those operators has been already noted in the literature, no updated complete list has been published to date. Here we perform their classification once again from the outset. Assuming baryon number conservation, we find 15 + 19 + 25 = 59 independent operators (barring flavour structure and Hermitian conjugations), as compared to 16 + 35 + 29 = 80 in Ref.[3]. The three summed numbers refer to operators containing 0, 2 and 4 fermion fields. If the assumption of baryon number conservation is relaxed, 4 new operators arise in the four-fermion sector.Comment: 16 pages, no figures, v3: Redundant B-violating operator remove

    Hara's Theorem and W-exchange in Hyperon Weak Radiative Decays

    Full text link
    We reconsider Hara's theorem in its relation to the well-known properties of beta-decay. All assumptions necessary for the theorem to be true are explicitly formulated. Further, we study the W-exchange contribution to weak radiative decays and show that it does not violate Hara's theorem. However, this contribution reveals the essential role of particle mixing in symmetry considerations and some peculiar features of gauge-invariant amplitudes under perturbative expansion. Together they explain an effect, which was treated as contradicting Hara's theorem, without any violation. The properties of W-exchange we describe here may have more general importance and should be taken into account in further detailed calculations of weak processes.Comment: 14 pages, LATEX, no figure

    True Neutrality as a New Type of Flavour

    Full text link
    A classification of leptonic currents with respect to C-operation requires the separation of elementary particles into the two classes of vector C-even and axial-vector C-odd character. Their nature has been created so that to each type of lepton corresponds a kind of neutrino. Such pairs are united in families of a different C-parity. Unlike the neutrino of a vector type, any C-noninvariant Dirac neutrino must have his Majorana neutrino. They constitute the purely neutrino families. We discuss the nature of a corresponding mechanism responsible for the availability in all types of axial-vector particles of a kind of flavour which distinguishes each of them from others by a true charge characterized by a quantum number conserved at the interactions between the C-odd fermion and the field of emission of the corresponding types of gauge bosons. This regularity expresses the unidenticality of truly neutral neutrino and antineutrino, confirming that an internal symmetry of a C-noninvariant particle is described by an axial-vector space. Thereby, a true flavour together with the earlier known lepton flavour predicts the existence of leptonic strings and their birth in single and double beta decays as a unity of flavour and gauge symmetry laws. Such a unified principle explains the availability of a flavour symmetrical mode of neutrino oscillations.Comment: 19 pages, LaTex, Published version in IJT
    • …
    corecore