We compute spin-flip cross section for graviton photoproduction on a spin-1/2
target of finite mass. Using this tree-level result, we find one-loop graviton
correction to the spin-flip low-energy forward Compton scattering amplitude by
using Gerasimov-Drell-Hearn sum rule. We show that this result agrees with the
corresponding perturbative computations, implying the validity of the sum rule
at one-loop level, contrary to the previous claims. We discuss possible effects
from the black hole production and string Regge trajectory exchange at very
high energies. These effects seem to soften the UV divergence present at
one-loop graviton level. Finally, we discuss the relation of these observations
with the models that involve extra dimensions.Comment: 15 pages, 3 figure