13,404 research outputs found

    Points of General Relativisitic Shock Wave Interaction are "Regularity Singularities" where Spacetime is Not Locally Flat

    Full text link
    We show that the regularity of the gravitational metric tensor in spherically symmetric spacetimes cannot be lifted from C0,1C^{0,1} to C1,1C^{1,1} within the class of C1,1C^{1,1} coordinate transformations in a neighborhood of a point of shock wave interaction in General Relativity, without forcing the determinant of the metric tensor to vanish at the point of interaction. This is in contrast to Israel's Theorem which states that such coordinate transformations always exist in a neighborhood of a point on a smooth single shock surface. The results thus imply that points of shock wave interaction represent a new kind of singularity for perfect fluids evolving in spacetime, singularities that make perfectly good sense physically, that can form from the evolution of smooth initial data, but at which the spacetime is not locally Minkowskian under any coordinate transformation. In particular, at such singularities, delta function sources in the second derivatives of the gravitational metric tensor exist in all coordinate systems of the C1,1C^{1,1} atlas, but due to cancelation, the curvature tensor remains uniformly bounded.Comment: This article has been withdrawn since the main result is wrong due to an computational error. See arXiv:1506.04081 and arXiv:1409.5060 for a correction of this error and a proof of the opposite statemen

    Preliminary study of contaminant particulates around Skylab

    Get PDF
    Techniques originally developed for the Skylab T025 contamination experiment were applied to S052 white-light coronagraph data in a preliminary study to investigate particulates around Skylab. Periods were selected which contained some contamination, even though there were no apparent dumps or vents during these periods. Velocity and size distributions were determined from optical data for particles within 200 meters of the spacecraft. Both photographic (61 particle tracks) and video (34 particles) observations yield an upper limit on particle radius of 100 micrometers. Selected photometric data from the S073 zodiacal light experiment during mission SL-2 were also examined for evidence of contamination

    Carbon monoxide oxidation catalysis over Ir(110)

    Get PDF
    N/

    Unification of Gravitation, Gauge Field and Dark Energy

    Full text link
    This paper is composed of two correlated topics: 1. unification of gravitation with gauge fields; 2. the coupling between the daor field and other fields and the origin of dark energy. After introducing the concept of ``daor field" and discussing the daor geometry, we indicate that the complex daor field has two kinds of symmetry transformations. Hence the gravitation and SU(1,3) gauge field are unified under the framework of the complex connection. We propose a first-order nonlinear coupling equation of the daor field, which includes the coupling between the daor field and SU(1,3) gauge field and the coupling between the daor field and the curvature, and from which Einstein's gravitational equation can be deduced. The cosmological observations imply that dark energy cannot be zero, and which will dominate the doom of our Universe. The real part of the daor field self-coupling equation can be regarded as Einstein's equation endowed with the cosmological constant. It shows that dark energy originates from the self-coupling of the space-time curvature, and the energy-momentum tensor is proportional to the square of coupling constant \lambda. The dark energy density given by our scenario is in agreement with astronomical observations. Furthermore, the Newtonian gravitational constant G and the coupling constant \epsilon of gauge field satisfy G= \lambda^{2}\epsilon^{2}.Comment: 24 pages, revised version; references added; typos correcte

    Novel applications of the NASA/GSFC Viterbi decoder hardware simulator

    Get PDF
    The NASA/GSFC developed an all digital, real time, programmable Viterbi decoder simulator operating at rates up to 6 Msps. With this simulator, the bit error rate (BER) performance of convolutionally encoded/Viterbi decoded Shuttle-TDRSS return link channels under pulsed radio frequency interference (RFI) conditions has been predicted. The principles of the simulator are described with special emphasis on the channel simulator and the essential interaction between CLASS software and the simulator. The sensitivity of coded BER as function of several illustrative RFI parameters is discussed for two typical Shuttle-TDRSS return link configurations

    Cosmological Density Perturbations with a Scale-Dependent Newton's G

    Full text link
    We explore possible cosmological consequences of a running Newton's constant G(â–ˇ) G ( \Box ) , as suggested by the non-trivial ultraviolet fixed point scenario in the quantum field-theoretic treatment of Einstein gravity with a cosmological constant term. In particular we focus here on what possible effects the scale-dependent coupling might have on large scale cosmological density perturbations. Starting from a set of manifestly covariant effective field equations derived earlier, we systematically develop the linear theory of density perturbations for a non-relativistic, pressure-less fluid. The result is a modified equation for the matter density contrast, which can be solved and thus provides an estimate for the growth index parameter Îł\gamma in the presence of a running GG. We complete our analysis by comparing the fully relativistic treatment with the corresponding results for the non-relativistic (Newtonian) case, the latter also with a weakly scale dependent GG.Comment: 54 pages, 4 figure

    Information Loss in Quantum Gravity Without Black Holes

    Get PDF
    We use the weak field approximation to show that information is lost in principle in quantum gravity.Comment: 14pp, Late

    Kinetics and mechanism of formic acid decomposition on Ru(001)

    Get PDF
    The steady-state rate of decomposition of formic acid on Ru(001) has been measured as a function of surface temperature, parametric in the pressure of formic acid. The products of the decomposition reaction are C0_2, H_2, CO, and H_2)0, i.e., both dehydrogenation and dehydration occur on Ru (001). A similar product distribution has been observed on Ni(110), Ni(100), Ru(100), Fe(100), and Ni(111) surfaces; whereas only dehydrogenation to C0_2 and H_2 occurs on the Cu(100), Cu(110), and Pt(111) surfaces. Only reversible adsorption and desorption of formic acid is observed on the less reactive Ag(110) surface at low temperatures, whereas the more reactive Mo(100) surface is oxidized by formic acid at low temperatures with the products of this reaction being H_2, CO, and H_(2)O (Ref. 10). We report here the confirmation of earlier observations of the occurrence of both dehydrogenation and dehydration of formic acid on Ru(001), and more importantly, we provide a detailed mechanistic description of the steady-state decomposition reaction on this surface in terms of elementary steps

    Catalytic reaction between adsorbed oxygen and hydrogen on Rh(111)

    Get PDF
    Abstract unavailable

    About the propagation of the Gravitational Waves in an asymptotically de-Sitter space: Comparing two points of view

    Full text link
    We analyze the propagation of gravitational waves (GWs) in an asymptotically de-Sitter space by expanding the perturbation around Minkowski and introducing the effects of the Cosmological Constant (Λ\Lambda), first as an additional source (de-Donder gauge) and after as a gauge effect (Λ\Lambda-gauge). In both cases the inclusion of the Cosmological Constant Λ\Lambda impedes the detection of a gravitational wave at a distance larger than Lcrit=(62πfh^/5)rΛ2L_{crit}=(6\sqrt{2}\pi f \hat{h}/\sqrt{5})r_\Lambda^2, where rΛ=1Λr_\Lambda=\frac{1}{\sqrt{\Lambda}} and f and h^\hat{h} are the frequency and strain of the wave respectively. We demonstrate that LcritL_{crit} is just a confirmation of the Cosmic No hair Conjecture (CNC) already explained in the literature.Comment: Accepted for publication in MPL
    • …
    corecore