13,736 research outputs found

    Cosmological Density Perturbations with a Scale-Dependent Newton's G

    Full text link
    We explore possible cosmological consequences of a running Newton's constant G() G ( \Box ) , as suggested by the non-trivial ultraviolet fixed point scenario in the quantum field-theoretic treatment of Einstein gravity with a cosmological constant term. In particular we focus here on what possible effects the scale-dependent coupling might have on large scale cosmological density perturbations. Starting from a set of manifestly covariant effective field equations derived earlier, we systematically develop the linear theory of density perturbations for a non-relativistic, pressure-less fluid. The result is a modified equation for the matter density contrast, which can be solved and thus provides an estimate for the growth index parameter γ\gamma in the presence of a running GG. We complete our analysis by comparing the fully relativistic treatment with the corresponding results for the non-relativistic (Newtonian) case, the latter also with a weakly scale dependent GG.Comment: 54 pages, 4 figure

    Principles of Antifragile Software

    Full text link
    The goal of this paper is to study and define the concept of "antifragile software". For this, I start from Taleb's statement that antifragile systems love errors, and discuss whether traditional software dependability fits into this class. The answer is somewhat negative, although adaptive fault tolerance is antifragile: the system learns something when an error happens, and always imrpoves. Automatic runtime bug fixing is changing the code in response to errors, fault injection in production means injecting errors in business critical software. I claim that both correspond to antifragility. Finally, I hypothesize that antifragile development processes are better at producing antifragile software systems.Comment: see https://refuses.github.io

    On the power counting of loop diagrams in general relativity

    Get PDF
    A class of loop diagrams in general relativity appears to have a behavior which would upset the utility of the energy expansion for quantum effects. We show through the study of specific diagrams that cancellations occur which restore the expected behaviour of the energy expansion. By considering the power counting in a physical gauge we show that the apparent bad behavior is a gauge artifact, and that the quantum loops enter with a well behaved energy expansion.Comment: 29 pages, uses axodraw and epsfig.tex, one small .eps file is included. The full PostScript version is also available as http://het.phast.umass.edu/students/kakukk/powercount_hepth.p

    The Composite Spectrum of Strong Lyman-alpha Forest Absorbers

    Get PDF
    We present a new method for probing the physical conditions and metal enrichment of the Intergalactic Medium: the composite spectrum of Ly-alpha forest absorbers. We apply this technique to a sample of 9480 Ly-alpha absorbers with redshift 2 < z < 3.5 identified in the spectra of 13,279 high-redshift quasars from the Sloan Digital Sky Survey (SDSS) Fifth Data Release (DR5). Absorbers are selected as local minima in the spectra with 2.4 < tau_Ly-alpha < 4.0; at SDSS resolution (~ 150km/s FWHM), these absorbers are blends of systems that are individually weaker. In the stacked spectra we detect seven Lyman-series lines and metal lines of O VI, N V, C IV, C III, Si IV, C II, Al II, Si II, Fe II, Mg II, and O I. Many of these lines have peak optical depths of < 0.02, but they are nonetheless detected at high statistical significance. Modeling the Lyman-series measurements implies that our selected systems have total H I column densities N_HI ~ 10^15.4cm-2. Assuming typical physical conditions rho / = 10, T = 10^4 - 10^4.5 K, and [Fe/H]= -2 yields reasonable agreement with the line strengths of high-ionization species, but it underpredicts the low-ionization species by two orders of magnitude or more. This discrepancy suggests that the low ionization lines arise in dense, cool, metal-rich clumps, present in some absorption systems.Comment: 7 pages, 4 figures, 1 table, accepted by ApJL, revisions mad

    Radiation damage in high voltage silicon solar cells

    Get PDF
    Three high open-circuit voltage cell designs based on 0.1 ohm-cm p-type silicon were irradiated with 1 MeV electrons and their performance determined to fluences as high as 10 to the 15th power/sq cm. Of the three cell designs, radiation induced degradation was greatest in the high-low emitter (HLE cell). The diffused and ion implanted cells degraded approximately equally but less than the HLE cell. Degradation was greatest in an HLE cell exposed to X-rays before electron irradiation. The cell regions controlling both short-circuit current and open-circuit voltage degradation were defined in all three cell types. An increase in front surface recombination velocity accompanied time dependent degradation of an HLE cell after X-irradiation. It was speculated that this was indirectly due to a decrease in positive charge at the silicon-oxide interface. Modifications aimed at reducing radiation induced degradation are proposed for all three cell types

    Nonlocal Effective Field Equations for Quantum Cosmology

    Full text link
    The possibility that the strength of gravitational interactions might slowly increase with distance, is explored by formulating a set of effective field equations, which incorporate the gravitational, vacuum-polarization induced, running of Newton's constant GG. The resulting long distance (or large time) behaviour depends on only one adjustable parameter ξ\xi, and the implications for the Robertson-Walker universe are calculated, predicting an accelerated power-law expansion at later times tξ1/Ht \sim \xi \sim 1/H.Comment: 9 page

    Orthonormalization procedure for chiral effective nuclear field theory

    Get PDF
    We show that the Q-box expansion of nuclear many-body physics can be applied in nuclear effective field theory with explicit pions and external sources. We establish the corresponding power counting and give an algorithm for the construction of a hermitean and energy-independent potential for arbitrary scattering processes on nucleons and nuclei to a given order in the chiral expansion. Various examples are discussed in some detail.Comment: 22 pp, 12 fig

    Cosmic Voids and Galaxy Bias in the Halo Occupation Framework

    Full text link
    (Abridged) We investigate the power of void statistics to constrain galaxy bias and the amplitude of dark matter fluctuations. We use the halo occupation distribution (HOD) framework to describe the relation between galaxies and dark matter. After choosing HOD parameters that reproduce the mean space density n_gal and projected correlation function w_p measured for galaxy samples with M_r<-19 and M_r<-21 from the Sloan Digital Sky Survey (SDSS), we predict the void probability function (VPF) and underdensity probability function (UPF) of these samples by populating the halos of a large, high-resolution N-body simulation. If we make the conventional assumption that the HOD is independent of large scale environment at fixed halo mass, then models constrained to match n_gal and w_p predict nearly identical void statistics, independent of the scatter between halo mass and central galaxy luminosity or uncertainties in HOD parameters. Models with sigma_8=0.7 and sigma_8=0.9 also predict very similar void statistics. However, the VPF and UPF are sensitive to environmental variations of the HOD in a regime where these variations have little impact on w_p. For example, doubling the minimum host halo mass in regions with large scale (5 Mpc/h) density contrast delta<-0.65 has a readily detectable impact on void probabilities of M_r<-19 galaxies, and a similar change for delta<-0.2 alters the void probabilities of M_r<-21 galaxies at a detectable level. The VPF and UPF provide complementary information about the onset and magnitude of density- dependence in the HOD. By detecting or ruling out HOD changes in low density regions, void statistics can reduce systematic uncertainties in the cosmological constraints derived from HOD modeling, and, more importantly, reveal connections between halo formation history and galaxy properties.Comment: emulateapj, 16 pages, 13 figure
    corecore