13,605 research outputs found

    CO on Ru(001): Formation and dissolution of islands of CO at low coverages

    Get PDF
    The present paper deals with the benefits and difficulties of using ion scattering spectroscopy as a spectrometric technique

    Carbon monoxide oxidation catalysis over Ir(110)

    Get PDF
    N/

    Principles of Antifragile Software

    Full text link
    The goal of this paper is to study and define the concept of "antifragile software". For this, I start from Taleb's statement that antifragile systems love errors, and discuss whether traditional software dependability fits into this class. The answer is somewhat negative, although adaptive fault tolerance is antifragile: the system learns something when an error happens, and always imrpoves. Automatic runtime bug fixing is changing the code in response to errors, fault injection in production means injecting errors in business critical software. I claim that both correspond to antifragility. Finally, I hypothesize that antifragile development processes are better at producing antifragile software systems.Comment: see https://refuses.github.io

    Direct measurement of xenon flashtube opacity

    Get PDF
    Opacity measurement of xenon flash tube - optical mase

    Strange two-baryon interactions using chiral effective field theory

    Get PDF
    We have constructed the leading order strangeness S=-1,-2 baryon-baryon potential in a chiral effective field theory approach. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The potential, derived using SU(3)_f symmetry constraints, contains six independent low-energy coefficients. We have solved a regularized Lippmann-Schwinger equation and achieved a good description of the available scattering data. Furthermore a correctly bound hypertriton has been obtained.Comment: 3 pages, 2 PostScript figures, talk to appear in the proceedings of the "20th European Conference on Few-Body Problems in Physics (EFB20), Pisa, Italy, 10-14 September 2007

    Using Perturbative Least Action to Recover Cosmological Initial Conditions

    Get PDF
    We introduce a new method for generating initial conditions consistent with highly nonlinear observations of density and velocity fields. Using a variant of the Least Action method, called Perturbative Least Action (PLA), we show that it is possible to generate several different sets of initial conditions, each of which will satisfy a set of highly nonlinear observational constraints at the present day. We then discuss a code written to test and apply this method and present the results of several simulations.Comment: 24 pages, 6 postscript figures. Accepted for publication in Astrophysical Journa

    NVV auger spectra from W(100)

    Get PDF
    The NVV Auger spectrum from a clean W(100) surface has been measured in the second derivative, d^2N (E)/dE^2, mode to enhance fine structure. This measurement is compared with spectra generated from both the self‐convolution of the tungsten valence‐band bulk density of states (obtained from a relativistic APW energy band calculation) and a "restricted convolution" in which only transitions involving electrons from the same valence energy are allowed. The restricted convolution for a model of the Auger process in which both N_6VV and N_7VV transitions contribute offers the best match of theory and experiment. No distinct evidence of Auger emission involving the surface resonance present on W(100) is observed. Effects of H_2 and O_2 adsorption on the Auger spectrum of the W(100) surface are reported

    Cosmological Density Perturbations with a Scale-Dependent Newton's G

    Full text link
    We explore possible cosmological consequences of a running Newton's constant G() G ( \Box ) , as suggested by the non-trivial ultraviolet fixed point scenario in the quantum field-theoretic treatment of Einstein gravity with a cosmological constant term. In particular we focus here on what possible effects the scale-dependent coupling might have on large scale cosmological density perturbations. Starting from a set of manifestly covariant effective field equations derived earlier, we systematically develop the linear theory of density perturbations for a non-relativistic, pressure-less fluid. The result is a modified equation for the matter density contrast, which can be solved and thus provides an estimate for the growth index parameter γ\gamma in the presence of a running GG. We complete our analysis by comparing the fully relativistic treatment with the corresponding results for the non-relativistic (Newtonian) case, the latter also with a weakly scale dependent GG.Comment: 54 pages, 4 figure
    corecore