1,604 research outputs found

    InP homojunction solar cell performance on the LIPS 3 flight experiment

    Get PDF
    Performance data for the NASA Lewis Research Center indium phosphide n+p homojunction solar cell module on the LIPS 3 Flight Experiment is presented. The objective of the experiment is to measure the performance of InP cells in the natural radiation environment of the 1100 km altitude, 60+ deg inclination orbit. Analysis of flight data indicates that the performance of the four cells throughout the first year is near expected values. No degradation in short-circuit current was seen, as was expected from radiation tolerance studies of similar cells. Details of the cell structure and flight module design are discussed. The results of the temperature dependency and radiation tolerance studies necessary for normalization and analysis of the data are included

    Gear bearing drive

    Get PDF
    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs

    The Soft-Wall Standard Model

    Full text link
    We explore the possibility of modeling electroweak physics in a warped extra dimension with a soft wall. The infrared boundary is replaced with a smoothly varying dilaton field that provides a dynamical spacetime cutoff. We analyze gravity, gauge fields, and fermions in the soft-wall background and obtain a discrete spectrum of Kaluza-Klein states which can exhibit linear Regge-like behavior. Bulk Yukawa interactions give rise to nonconstant fermion mass terms, leading to fermion localization in the soft-wall background and a possible explanation of the Standard Model flavor structure. Furthermore we construct electroweak models with custodial symmetry, where the gauge symmetry is broken with a bulk Higgs condensate. The electroweak constraints are not as stringent as in hard-wall models, allowing Kaluza-Klein masses of order the TeV scale.Comment: 32 pages, 3 figure

    Microscopic Inner Retinal Hyper-reflective Phenotypes in Retinal and Neurologic Disease

    Get PDF
    Purpose. We surveyed inner retinal microscopic features in retinal and neurologic disease using a reflectance confocal adaptive optics scanning light ophthalmoscope (AOSLO). Methods. Inner retinal images from 101 subjects affected by one of 38 retinal or neurologic conditions and 11 subjects with no known eye disease were examined for the presence of hyper-reflective features other than vasculature, retinal nerve fiber layer, and foveal pit reflex. The hyper-reflective features in the AOSLO images were grouped based on size, location, and subjective texture. Clinical imaging, including optical coherence tomography (OCT), scanning laser ophthalmoscopy, and fundus photography was analyzed for comparison. Results. Seven categories of hyper-reflective inner retinal structures were identified, namely punctate reflectivity, nummular (disc-shaped) reflectivity, granular membrane, waxy membrane, vessel-associated membrane, microcysts, and striate reflectivity. Punctate and nummular reflectivity also was found commonly in normal volunteers, but the features in the remaining five categories were found only in subjects with retinal or neurologic disease. Some of the features were found to change substantially between follow up imaging months apart. Conclusions. Confocal reflectance AOSLO imaging revealed a diverse spectrum of normal and pathologic hyper-reflective inner and epiretinal features, some of which were previously unreported. Notably, these features were not disease-specific, suggesting that they might correspond to common mechanisms of degeneration or repair in pathologic states. Although prospective studies with larger and better characterized populations, along with imaging of more extensive retinal areas are needed, the hyper-reflective structures reported here could be used as disease biomarkers, provided their specificity is studied further

    A Chiral Effective Lagrangian for Nuclei

    Full text link
    An effective hadronic lagrangian consistent with the symmetries of quantum chromodynamics and intended for applications to finite-density systems is constructed. The degrees of freedom are (valence) nucleons, pions, and the low-lying non-Goldstone bosons, which account for the intermediate-range nucleon-nucleon interactions and conveniently describe the nonvanishing expectation values of nucleon bilinears. Chiral symmetry is realized nonlinearly, with a light scalar meson included as a chiral singlet to describe the mid-range nucleon-nucleon attraction. The low-energy electromagnetic structure of the nucleon is described within the theory using vector-meson dominance, so that external form factors are not needed. The effective lagrangian is expanded in powers of the fields and their derivatives, with the terms organized using Georgi's ``naive dimensional analysis''. Results are presented for finite nuclei and nuclear matter at one-baryon-loop order, using the single-nucleon structure determined within the model. Parameters obtained from fits to nuclear properties show that naive dimensional analysis is a useful principle and that a truncation of the effective lagrangian at the first few powers of the fields and their derivatives is justified.Comment: 43 pages, REVTeX 3.0 with epsf.sty, plus 12 figure

    Relativistic Mean-Field Theory and the High-Density Nuclear Equation of State

    Get PDF
    The properties of high-density nuclear and neutron matter are studied using a relativistic mean-field approximation to the nuclear matter energy functional. Based on ideas of effective field theory, nonlinear interactions between the fields are introduced to parametrize the density dependence of the energy functional. Various types of nonlinearities involving scalar-isoscalar (σ\sigma), vector-isoscalar (ω\omega), and vector-isovector (ρ\rho) fields are studied. After calibrating the model parameters at equilibrium nuclear matter density, the model and parameter dependence of the resulting equation of state is examined in the neutron-rich and high-density regime. It is possible to build different models that reproduce the same observed properties at normal nuclear densities, but which yield maximum neutron star masses that differ by more than one solar mass. Implications for the existence of kaon condensates or quark cores in neutron stars are discussed.Comment: 26 pages in RevTex, 12 PostScript figure
    corecore