529 research outputs found

    Quantum repeaters with individual rare-earth ions at telecommunication wavelengths

    Get PDF
    We present a quantum repeater scheme that is based on individual erbium and europium ions. Erbium ions are attractive because they emit photons at telecommunication wavelength, while europium ions offer exceptional spin coherence for long-term storage. Entanglement between distant erbium ions is created by photon detection. The photon emission rate of each erbium ion is enhanced by a microcavity with high Purcell factor, as has recently been demonstrated. Entanglement is then transferred to nearby europium ions for storage. Gate operations between nearby ions are performed using dynamically controlled electric-dipole coupling. These gate operations allow entanglement swapping to be employed in order to extend the distance over which entanglement is distributed. The deterministic character of the gate operations allows improved entanglement distribution rates in comparison to atomic ensemble-based protocols. We also propose an approach that utilizes multiplexing in order to enhance the entanglement distribution rate.Comment: 13 pages, 4 figure

    Mars Spacecraft Power System Development Final Report

    Get PDF
    Development of optimum Mariner spacecraft power system for application to future flyby and orbiter mission

    Schnurri-3 (KRC) Interacts with c-Jun to Regulate the IL-2 Gene in T Cells

    Get PDF
    The activator protein 1 (AP-1) transcription factor is a key participant in the control of T cell proliferation, cytokine production, and effector function. In the immune system, AP-1 activity is highest in T cells, suggesting that a subset of T cell–specific coactivator proteins exist to selectively potentiate AP-1 function. Here, we describe that the expression of Schnurri-3, also known as Îș recognition component (KRC), is induced upon T cell receptor signaling in T cells and functions to regulate the expression of the interleukin 2 (IL-2) gene. Overexpression of KRC in transformed and primary T cells leads to increased IL-2 production, whereas dominant-negative KRC, or loss of KRC protein in KRC-null mice, results in diminished IL-2 production. KRC physically associates with the c-Jun transcription factor and serves as a coactivator to augment AP-1–dependent IL-2 gene transcription

    Mathematical modeling of the dynamics of the bladder cancer and the immune response applied to a patient: Evolution and short-term prediction

    Full text link
    [EN] Bladder cancer is one of the most common malignant diseases in the urinary system and a highly aggressive neoplasm. The prognosis is not favorable usually, and its evolution for particular patients is very difficult to find out. In this paper, we propose a dynamic mathematical model that describes the bladder tumor growth and the immune response evolution. This model is customized for a single patient, determining appropriate model parameter values via model calibration. Due to the uncertainty of the tumor evolution, using the calibrated model parameters, we predict the tumor size and the immune response evolution over the next few months assuming three different scenarios: favorable, neutral, and unfavorable. In the former, it is not expected any trace of the cancer in the middle of September 2018 (after 16 mo). In the neutral scenario, at the same date, a 7- to 8-mm tumor is expected. In the worst case, a 40-mm tumor is expected. The patient was cited on 10 September 2018 to check the tumor size, and according to the doctors, there was no sign of recurrence. It seems that we are in the favorable scenario. The patient will be called again for follow-up in mid-2019.This work has been supported by the Ministerio de Economía, Industria y Competitividad grant MTM2017-89664-P.Burgos-Simon, C.; García-Medina, N.; Martínez-Rodríguez, D.; Villanueva Micó, RJ. (2019). Mathematical modeling of the dynamics of the bladder cancer and the immune response applied to a patient: Evolution and short-term prediction. Mathematical Methods in the Applied Sciences. 42(17):5746-5757. https://doi.org/10.1002/mma.5536S574657574217Official Site for Spanish Medic Oncology Society.https://www.seom.org. Accessed: 25/09/2018.Greenlee, R. T., Hill-Harmon, M. B., Murray, T., & Thun, M. (2001). Cancer Statistics, 2001. CA: A Cancer Journal for Clinicians, 51(1), 15-36. doi:10.3322/canjclin.51.1.15Holmang, S., Hedelin, H., Anderstrom, C., & Johansson, S. L. (1995). The Relationship Among Multiple Recurrences, Progression and Prognosis of Patients with Stages TA and T1 Transitional Cell Cancer of the Bladder Followed for at least 20 years. Journal of Urology, 153(6), 1823-1827. doi:10.1016/s0022-5347(01)67321-xRedelman-Sidi, G., Glickman, M. S., & Bochner, B. H. (2014). The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nature Reviews Urology, 11(3), 153-162. doi:10.1038/nrurol.2014.15Bladder Cancer Treatment (PDQ)‐Health Professional Version.https://www.cancer.gov/types/bladder/hp/bladder-treatment-pdq. Accessed: 25/09/2018.Bladder Cancer Treatment (PDQ)‐Patient Version.https://www.cancer.gov/types/bladder/patient/bladder-treatment-pdq. Accessed: 25/09/2018.Official Site for Hospital Universitari i Politùcnic La Fe Valencia Spain.http://www.hospital-lafe.com. Accessed: 25/09/2018.Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of Cancer: The Next Generation. Cell, 144(5), 646-674. doi:10.1016/j.cell.2011.02.013Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., 
 Chen, L. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature Medicine, 8(8), 793-800. doi:10.1038/nm730Fernandez, N. C., Lozier, A., Flament, C., Ricciardi-Castagnoli, P., Bellet, D., Suter, M., 
 Zitvogel, L. (1999). Dendritic cells directly trigger NK cell functions: Cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Medicine, 5(4), 405-411. doi:10.1038/7403Factsheet of OncoTICE 2 − 8 × 108UFC powder for suspension intravesical (in Spanish).https://www.aemps.gob.es/cima/pdfs/es/ft/61377/61377_ft.pdf. Accessed: 25/09/2018

    Energy-efficient quantum non-demolition measurement with a spin-photon interface

    Full text link
    Spin-photon interfaces (SPIs) are key devices of quantum technologies, aimed at coherently transferring quantum information between spin qubits and propagating pulses of polarized light. We study the potential of a SPI for quantum non demolition (QND) measurements of a spin state. After being initialized and scattered by the SPI, the state of a light pulse depends on the spin state. It thus plays the role of a pointer state, information being encoded in the light's temporal and polarization degrees of freedom. Building on the fully Hamiltonian resolution of the spin-light dynamics, we show that quantum superpositions of zero and single photon states outperform coherent pulses of light, producing pointer states which are more distinguishable with the same photon budget. The energetic advantage provided by quantum pulses over coherent ones is maintained when information on the spin state is extracted at the classical level by performing projective measurements on the light pulses. The proposed schemes are robust against imperfections in state of the art semi-conducting devices.Comment: Accepted for publication in Quantu

    Coherence-powered work exchanges between a solid-state qubit and light fields

    Full text link
    How does quantum coherence impact energy exchanges between quantum systems? This key question of quantum thermodynamics is also of prime importance for the energy management of emerging technologies based on quantum coherence. Pioneering theoretical frameworks have been proposed to describe the role of coherence in the energetic exchanges between a qubit and the electromagnetic field. Here, we experimentally study the work transferred during the spontaneous emission of a solid-state qubit into a reservoir of modes of the electromagnetic field, a step that energetically corresponds to the charging of a quantum battery. We show that the amount of transferred work is proportional to the initial quantum coherence of the qubit, and is reduced at higher temperatures. In a second step, we {study the discharge of the battery and its energy transfer} to a classical, i.e., laser field using homodyne-type measurements. Our research shows that the amount of energy and work transferred to the laser field is controlled by the relative classical optical phase between the two fields, the quantum purity of the charged battery field as theoretically predicted, as well as long-term fluctuations in the qubit solid-state environment. Our study lays the groundwork for the energetics of quantum light generation and optical quantum interferences - two key processes that are at the core of most light-based quantum technologies

    Empirical Bayesian Mixture Models for Medical Image Translation

    Get PDF
    Automatically generating one medical imaging modality from another is known as medical image translation, and has numerous interesting applications. This paper presents an interpretable generative modelling approach to medical image translation. By allowing a common model for group-wise normalisation and segmentation of brain scans to handle missing data, the model allows for predicting entirely missing modalities from one, or a few, MR contrasts. Furthermore, the model can be trained on a fairly small number of subjects. The proposed model is validated on three clinically relevant scenarios. Results appear promising and show that a principled, probabilistic model of the relationship between multi-channel signal intensities can be used to infer missing modalities -- both MR contrasts and CT images.Comment: Accepted to the Simulation and Synthesis in Medical Imaging (SASHIMI) workshop at MICCAI 201
    • 

    corecore