762 research outputs found

    Adherence to secondary stroke prevention strategies - Results from the German stroke data bank

    Get PDF
    Only very limited data are available concerning patient adherence to antithrombotic medication intended to prevent a recurrent stroke. Reduced adherence and compliance could significantly influence the effects of any stroke prevention strategies. This study from a large stroke data bank provides representative data concerning the rate of stroke victims adhering to their recommended preventive medication. During a 2-year period beginning January 1, 1998, all patients with acute stroke or TIA in 23 neurological departments with an acute stroke unit were included in the German Stroke Data Bank. Data were collected prospectively, reviewed, validated and processed in a central data management unit. Only 12 centers with a follow-up rate of 80% or higher were included in this evaluation. 3,420 patients were followed up after 3 months, and 2,640 patients were followed up one year after their stroke. After one year, 96% of all patients reported still adhere to at least one medical stroke prevention strategy. Of the patients receiving aspirin at discharge, 92.6% reported to use that medication after 3 months and 84% after one year, while 81.6 and 61.6% were the respective figures for clopidogrel, and 85.2 and 77.4% for oral anticoagulation. Most patients who changed medication switched from aspirin to clopidogrel. Under the conditions of this observational study, adherence to stroke prevention strategies is excellent. The highest adherence rate is noticed for aspirin and oral anticoagulation. After one year, very few patients stopped taking stroke preventive medication. Copyright (C) 2003 S. Karger AG, Basel

    Interferons, properties and applications

    Get PDF
    The main theme of this thesis is the clinical evaluation of interferon. From the biology of the interferon system and animal experiments it can be expected that exogenous interferon will exert its optimum effect when used to prevent acute infections or to modulate chronic infections. Therefore, we administered interferon to patients with chronic hepatitis B virus infection (chapter 5) and to renal transplant recipients, in whom viral infections occur frequently in the first months after transplantation (chapter 6). The other studies in this thesis are directly related to the problems we met in the clinical studies. We wanted to study interferon in an animal renal transplantation model. For us the most obvious choice was the rat. However, little was known about the production and characterization of rat interferon. Chapter 2 describes our experiences with rat interferon. While we were well underway with the study in renal transplant recipients, we were contacted by Martin Hirsch, who was conducting a similar trial in Boston. Some of his patients receiving 3 x 106 U HLI every other day showed severe bone marrow depression. We had no such problem in our trial, but we used another type of interferon: HFI. For this reason we started a study on the t'oxicity of interferons for bone marrow in vitro

    Construction of an isotropic cellular automaton for a reaction-diffusion equation by means of a random walk

    Full text link
    We propose a new method to construct an isotropic cellular automaton corresponding to a reaction-diffusion equation. The method consists of replacing the diffusion term and the reaction term of the reaction-diffusion equation with a random walk of microscopic particles and a discrete vector field which defines the time evolution of the particles. The cellular automaton thus obtained can retain isotropy and therefore reproduces the patterns found in the numerical solutions of the reaction-diffusion equation. As a specific example, we apply the method to the Belousov-Zhabotinsky reaction in excitable media

    Validation and Calibration of Models for Reaction-Diffusion Systems

    Full text link
    Space and time scales are not independent in diffusion. In fact, numerical simulations show that different patterns are obtained when space and time steps (Δx\Delta x and Δt\Delta t) are varied independently. On the other hand, anisotropy effects due to the symmetries of the discretization lattice prevent the quantitative calibration of models. We introduce a new class of explicit difference methods for numerical integration of diffusion and reaction-diffusion equations, where the dependence on space and time scales occurs naturally. Numerical solutions approach the exact solution of the continuous diffusion equation for finite Δx\Delta x and Δt\Delta t, if the parameter γN=DΔt/(Δx)2\gamma_N=D \Delta t/(\Delta x)^2 assumes a fixed constant value, where NN is an odd positive integer parametrizing the alghorithm. The error between the solutions of the discrete and the continuous equations goes to zero as (Δx)2(N+2)(\Delta x)^{2(N+2)} and the values of γN\gamma_N are dimension independent. With these new integration methods, anisotropy effects resulting from the finite differences are minimized, defining a standard for validation and calibration of numerical solutions of diffusion and reaction-diffusion equations. Comparison between numerical and analytical solutions of reaction-diffusion equations give global discretization errors of the order of 10−610^{-6} in the sup norm. Circular patterns of travelling waves have a maximum relative random deviation from the spherical symmetry of the order of 0.2%, and the standard deviation of the fluctuations around the mean circular wave front is of the order of 10−310^{-3}.Comment: 33 pages, 8 figures, to appear in Int. J. Bifurcation and Chao
    • …
    corecore