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ABSTRACT

White matter hyperintensities are known to play a role in the cognitive decline experienced by patients suffering
from neurological diseases. Therefore, accurately detecting and monitoring these lesions is of importance. Au-
tomatic methods for segmenting white matter lesions typically use multimodal MRI data. Furthermore, many
methods use a training set to perform a classification task or to determine necessary parameters. In this work,
we describe and evaluate an unsupervised segmentation method that is based solely on the histogram of FLAIR
images. It approximates the histogram by a mixture of three Gaussians in order to find an appropriate threshold
for white matter hyperintensities. We use a context-sensitive Expectation-Maximization method to determine
the Gaussian mixture parameters. The segmentation is subsequently corrected for false positives using the knowl-
edge of the location of typical FLAIR artifacts. A preliminary validation with the ground truth on 6 patients
revealed a Similarity Index of 0.73 ± 0.10, indicating that the method is comparable to others in the literature
which require multimodal MRI and/or a preliminary training step.
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1. INTRODUCTION

1.1 Background

White matter hyperintensities (WMHs) are diffuse white matter abnormalities that typically present high inten-
sities in T2-weighted images. They occur often in the elderly and have been shown to predict an increased risk
of stroke and cognitive decline.1, 2 The monitoring of WMHs can therefore provide useful information on the
early onset of these diseases.3

Several methods have been proposed to segmentWMHs fromMRI images,4–6 most of them using various types
of MRI modalities. The use of multimodal data presents several disadvantages. First, the acquired datasets must
be coregistered, which is computationally intensive and prone to errors. In particular, motion artifacts are seen
frequently in the MRI data from elderly patients, who are often not able to stay still during the whole acquisition
period. This imposes a serious limitation on the registration algorithms and their outcomes.7 Furthermore, it
happens often that the segmentation of, for instance, T1 images is also affected by the presence of lesions.5

Fast fluid-attenuated inversion-recovery (FLAIR) is a T2-weighted MRI modality in which the cerebrospinal
fluid (CSF) signal is attenuated. In FLAIR images, WMHs are characterized by high intensities within a range
that only partially overlaps with that of normal brain regions, making this MRI modality well suited for lesion
segmentation purposes.

A few methods have been proposed that perform histogram-based thresholding of FLAIR images. Hirono
et al.8 suggest an empirical threshold of 3.5 standard deviations from the white matter intensities. Their
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approach is semi-automatic, since it requires an initial manual rough estimate of the WMHs locations. Jack et
al.7 propose an automatic method that selects a threshold using data from 10 elderly patient datasets. Similarly,
de Boer et al.5 use a training set to find the most appropriate parameters for the determination of the WMH
threshold. Subsequently, the false positives are corrected using information provided by other MRI modalities.
More recently, Ong et al.9 employ an outlier detection analysis to select the WMH threshold.

All of the histogram-based methods described above require a training set or at least some a priori informa-
tion to determine an appropriate threshold for the white matter hyperintensities. In this work, we aim at an
unsupervised method that can be applied to any FLAIR dataset without the need for a training phase.

Gaussian Mixture Models (GMM), estimated by the Expectation-Maximization (EM) algorithm, have been
widely used in unsupervised image classification. They provide a statistical description of the voxels’ intensities
and allow for fuzzy classification.10 In the traditional GMM-EM approach, only spectral information is con-
sidered. The FLAIR histogram-based WMH segmentation methods mentioned above take also only spectral
information into account. However, it has been recognized that using only intensity information the methods
become highly sensitive to noise. In particular, boundary detection becomes problematic in noisy images. Fur-
thermore, the assumption that the voxel intensities are independent does not hold in practice. In reality, and
intuitively, we can expect a certain voxel’s value to be affected by those in its neighborhood.11 Therefore, we
use a modified GMM-EM approach that considers contextual information.

1.2 Contribution

In this work, we propose an unsupervised and fully automatic segmentation method that uses only three-
dimensional FLAIR images. We model the data using a mixture of three Gaussians. The Gaussian parameters
are determined using a modified Expectation-Maximization (EM) approach, which incorporates anisotropic con-
textual information in the E-step at each iteration. Finally, we perform a post-processing step to correct for false
positives, using prior information about the typical location of FLAIR artifacts.12

We apply the method to 40 datasets of patients suffering from Mild Cognitive Impairment (MCI) and pre-
senting WMHs of various loads.

2. METHODS

Figure 1 shows the general overview of our method.

1. GMM with
context-based EM

2. False Positive
correction

False Positives

WMHs

CSF WMHs

Final WMH segmentation

FLAIR Fuzzy class
memberships

Figure 1. General overview of the segmentation method.

We start by computing the brain image histogram and fitting a Gaussian Mixture Model to it, using a
modified Expectation-Maximization (EM) approach initialized with the normal EM method. Subsequently, we
remove the false positives that are located at the interface between the cerebrospinal fluid and the gray matter,
in the ventricles and in structures within the sagittal midplanes, such as the septum pellucidum. In the following
sections we will describe these steps in detail.
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2.1 Gaussian Mixture Model

Figure 2 shows the histograms of the FLAIR images of two patients. Two peaks can be easily distinguished:
the lowest one, at lower intensities, corresponds to cerebrospinal fluid voxels; the highest peak refers to white
and gray matter voxels. Additionally, in Figure 2b) a low and broad peak is present at the right-end tail of
the histogram. This peak is especially prominent in patients with a large lesion load and corresponds to WMH
intensities.

a) b)FLAIR intensities FLAIR intensities

Figure 2. FLAIR image and respective histogram from a patient: a) with a low WMH load; b) with a high WMH load.

We assume that the data are generated by a Gaussian Mixture Model (GMM) and that each voxel belongs
to one of three distinct classes—cerebrospinal fluid (CSF), white and gray matter (WM/GM), or white matter
hyperintensity (WMH)—. The probability density function (pdf) of a gray-level x can then be described by:

p(x|π,μ,σ) =
3∑

k=1

πkN (x|μk, σk) (1)

with k = 1, 2, 3 respectively corresponding to the CSF, WM/GM and WMH classes. Each Gaussian component
N is characterized by a mixing weight πk, a mean value μk and a standard deviation σk. We use the Expectation-
Maximization (EM) algorithm to find these parameters.

2.1.1 Traditional Expectation-Maximization

The EM algorithm is an iterative procedure that maximizes the log-likelihood of the parameters.13, 14 It alternates
between two consecutive steps: the E-step and the M-step. In the E-step, the parameters at the current iteration
are used to compute the log-likelihood. In the M-step, the computed log-likelihood is maximized to determine
the new parameters.

Assuming that the data, X = (x1, ..., xN ), are independent and identically distributed, the log-likelihood of
the parameters given the data is defined as:

�(π,μ,σ|X) = log

N∏

n=1

p(xn|π,μ,σ) =
N∑

n=1

log p(xn|π,μ,σ) (2)

The M-step parameter estimates are derived by maximizing Eq. 2:
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where T
(i)
k,n is determined at the E-step by:

T
(i)
k,n =

π
(i)
k N (xn|μ(i)

k , σ
(i)
k )

p(xn|π(i),μ(i),σ(i))
(4)

The initial parameters are computed from the histogram as follows: μ
(0)
WM/GM and μ

(0)
CSF correspond to

the first and second highest peaks in the histogram, respectively; μ
(0)
WMH is taken as the average value of the

maximum gray level present in the image and μ
(0)
WM/GM ; all standard deviations are initialized with the average

of half the distance between the peaks; finally, the CSF and WM/GM weights are selected based on the ratio

between μ
(0)
WM/GM and μ

(0)
CSF ; the initial WMH weight is set to 1%.

The algorithm has converged when the absolute normalized difference between the log-likelihood values at
two consecutive iterations is lower than 0.1%.

Although it may be sufficient to obtain a first rough approximation of the voxels’ statistical distributions,
the traditional EM algorithm has the disadvantage of taking only intensity information into account. However,
in an image, the location of the voxels can provide further information. In particular, we can expect adjacent
voxels to belong to the same class.15 Because the normal EM method described above does not consider such
contextual information, we use a previously proposed11 adaptation to the E-step. The difference between the
normal and the adapted EM approaches is particularly significant in cases with low WMH loads, as we will show
in Section 3.

2.1.2 Context-Sensitive Expectation-Maximization

In,11 the authors introduced contextual information into the traditional EM method as follows. At each iteration,
the posterior probability (Equation 4) is substituted by:

T
(i)CC
k,n =

π
(i)
k C

(i)
k,nN (xn|μ(i)

k , σ
(i)
k )

p(xn|π(i),μ(i),σ(i))
, (5)

which incorporates a context-sensitive penalty term C
(i)
k,n. This term imposes that, at each iteration, the proba-

bility that a voxel belongs to class k depends not only on the voxel’s intensity, but also on its neighbors’ current
class probabilities. We define the penalty term as follows:

C
(i)
k,n = NF{I(i)k }(xn) (6)

with I
(i)
k being the membership image which, at each brain voxel xn, represents the probability that the voxel

belongs to class k. NF{·} represents the filter used to take the voxel’s neighborhood into account. In,11 the
authors used, as a filter, the mean value within a local window, respectively. In this work, we use the 3× 3× 3
neighborhood of each voxel.

We initialize the context-sensitive (CS-) EM method with the parameters resulting from applying the tra-
ditional EM method to the dataset. After convergence, we apply a threshold to the resulting WMH and CSF
membership images. Instead of using Bayes’ Maximum A Posteriori (MAP) rule, we loosen the constraint and
define the threshold as 10−5.

2.2 False Positive correction

After applying the threshold, we still obtain some false positives — voxels that are initially considered to be
lesions but are in reality FLAIR artifacts. We apply a postprocessing step that consists of eliminating these
voxels from the segmentation, based on the knowledge on the location of common FLAIR hyperintensities.
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2.2.1 GM/CSF interface and Flow artifacts

A common location of false positives is in the interface between the CSF and the cortical gray matter. To
eliminate these voxels from our initial segmentation, we use the CSF mask obtained after thresholding the CSF
class membership image that results from the anisotropic-EM method described above. We perform binary
dilation of this mask with a three-dimensional 3× 3× 3 cubic structure with connectivity 1, and we stop after 3
iterations. We mask our first WMH segmentation obtained after applying the EM method with the dilated CSF
mask.

Other hyperintense voxels, resulting from flow artifacts (located mainly in the ventricular system)12 are also
eliminated in this step by morphologically “closing the holes” in the dilated CSF mask.

Finally, and because the lesion voxels adjacent to the ventricles are also eliminated after this step, we perform
binary propagation to the initial WMH segmentation in order to recover these wrongly eliminated voxels.

CSF FP mask

first WMH
segmentation

corrected WMH
segmentation

binary
propagation

final WMH
segmentation

WMH (red)
and FPs (blue)

original
FLAIR

Figure 3. False Positive correction: the WMH segmentation obtained in Section 2.1.2 is first masked with the dilated CSF
mask. The result is then propagated to the original segmentation to recover true lesion voxels. The result is shown as an
overlay, with the lesions shown in red and the eliminated false positives in blue.

2.2.2 Septum Pellucidum

The septum pellucidum is a structure located between the left and the right ventricles that also shows high
intensities in FLAIR.?, 12 To eliminate it from the segmentation, we first search for the sagittal midslice. This
brain slice is characterized by having lower intensities than its immediately adjacent neighbors (Figure 4a)).

We then select the 16 middle slices and look for the lesions that were segmented within this volume. The
septum pellucidum is the largest connected region. In some cases, other structures such as the falx cerebri and
the corpus pineale show also as hyperintensities. We make then the decision of eliminating all lesions present
within the midsagittal slices.

3. EXPERIMENTS AND RESULTS

3.1 Data and preprocessing

Forty 3D isotropic FLAIR images are utilized in this study (Siemens Avanto, 1.5 T; TR=40ms; TE=5ms; voxel
size = 1mm3). The datasets were retrieved from a large database of a cognition study with MCI patients carried
out at the University Hospital of Essen, Germany. We apply the following preprocessing steps:
- brain extraction using BET (Brain Extraction Tool, http://fsl.fmrib.ox.ac.uk/fsl/bet2/);16

- bias field correction using FAST (FMRIB’s Automated Segmentation Tool, http://fsl.fmrib.ox.ac.uk/fsl/fast4/)17
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a) b) c)

Figure 4. Elimination of the septum pellucidum voxels. a) average intensity of the sagittal slices, with the midslice
presenting a global minimum; b) sagittal midslice with the septum pellucidum voxels (previously segmented as WMH)
outlined in blue; c) 3D view of the eliminated septum pellucidum voxels.
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overlapping regions.

FLAIR intensities FLAIR intensities

FLAIR intensities FLAIR intensities

Figure 5. Example of the result of fitting a GMM to the FLAIR histogram: a) Histogram and the three GMM components;
b) detail of the gray-level region where there is class overlap; c) first WMH segmentation.

3.2 Expectation-Maximization approaches

An example of applying the two EM methods (traditional and context-sensitive) to a dataset from a patient with
a low WMH load is shown in Figure 5.

We observe that the WMH segmentation results (after applying a low threshold to the respective class
probability image) are more accurate when the modified EM approach is used. In particular, in the first case
the resulting WMH segmentation is corrupted with more false positives (voxels that are clearly part of the
gray matter rather than the WMH class) than when the voxels’ context is taken into account. Therefore, we
choose this method to determine the GMM parameters and consequently the first WMH segmentation, which is
afterwards subject to False Positive correction.

Furthermore, the class overlap is smaller in the CS-EM approach. The difference between the normal and
modified approaches is more significant at the WM/GM-WMH overlap.

We determine the class overlapping (CO) area of the resulting GMMs for the 40 patient datasets (Figure 6):

CO =

∫
min

(
pCSF(x), pWM/GM(x)

)
dx+

∫
min

(
pWM/GM(x), pWMH(x)

)
dx (7)

The overlap is greater for the normal EM method, suggesting that taking neighborhood information into
account will lead to a smaller classification error.
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Figure 6. Class overlapping area for the 40 patient datasets.

3.3 False positive correction

As described in Section 1, most methods that use FLAIR images to determine a first segmentation of the WMHs
comprise a subsequent False Positive correction step using the segmentation of an additional MRI modality, such
as T1. As a comparison, we use FAST (FMRIB’s Automated Segmentation Tool, http://fsl.fmrib.ox.ac.uk/fsl/-
fast4/)17 to segment the corresponding and previously co-registered T1 image. We apply the T1-based mask
instead of our FP mask (cf. Figure 3) to remove the voxels that are located outside the white matter. We show
in Figure 7 that such T1-based mask can be inadequate to detect the voxels at the GM/CSF interface (white
arrows). In addition, we can also observe that the T1 segmentation result is significantly affected by the presence
of large WMHs (blue arrows in the T1-based mask). This problem is, in this case, partially compensated by the
binary propagation step we apply to the corrected WMH segmentation (see Figure 3).

first WMH
segmentation

FLAIR-based
FP mask

WMH (red)
and FPs (blue)

T1-based
FP mask

WMH (red)
and FPs (blue)

Figure 7. Comparison of the two masks used to remove the false positives.

3.4 Quantitative evaluation

To evaluate the method, we compare our results with the ground truth provided by a trained neuroradiologist.
We use the following metrics for comparison: similarity index (SI), overlap fraction (OF) and extra fraction
(EF):4
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SI =
2×#TP

#AS +#GT
(8)

OF =
#TP

#GT
(9)

EF =
#FP

#GT
(10)

with TP and FP being the true and false positives, respectively, AS the automatic segmentation and GT the
ground truth provided by the expert.

Our results (mean ± standard deviation) on six patient datasets are the following: SI= 0.73 ± 0.10, OF=
0.67± 0.18 and EF= 0.13± 0.07. All values are shown per patient in Figure 8.

Figure 8. Performance measures (Similarity Index, Overlap Fraction and Extra Fraction) for six patients with various
WMH loads. The ground truth corresponds to the manual segmentation performed by an experienced neuroradiologist.

According to Bartko et al.,18 an SI value of 0.7 or higher indicates a very good agreement. The SI values
obtained by previous WMH segmentation methods are shown in Table 1. Other studies have reported high
correlation values between automatically and manually determined WMH volumes, but have not evaluated the
quality of their segmentation.19, 20

Table 1. Similarity Index (SI) values of automatic WMH segmentation methods available in the literature, for three lesion
load categories.

method
SI

small moderate large All
(< 10 cm3) (10− 30 cm3) (> 30 cm3)

Admiraal-Behloul6 0.7 0.82 0.82 0.75
Anbeek4 0.5 0.75 0.85 0.80
Dyrby21 0.45 0.62 0.65 0.56
Samaille22 0.55 0.68 0.80 0.66
de Boer5 - - - 0.72

As is clear from Table 1, all methods perform worst for small lesion loads. In our evaluation, four out of
the six patients for which a ground truth is provided have a lesion volume lower than 12cm3. The average SI
is, for these four patients, 0.66. Anbeek4 and de Boer5 reported an average Extra Fraction of 0.20 and 0.50,
respectively. The overlap fractions were 0.81 and 0.79. It is worth noting that these values vary highly with
the population. In particular, our preliminary evaluation considered a small sample of patients with low lesion
loads, for which it is recognized that the existing segmentation methods are less accurate.
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4. CONCLUSIONS

In this work, we present a method for automatically segmenting WMHs using only FLAIR images. It uses
a Gaussian Mixture Model to approximate the image’s gray-level histogram and initially segment the WMHs.
Unlike existing approaches (to the best of our knowledge), our method requires no additional MRI modalities nor
atlases, thereby avoiding the need for co-registrations and allowing for real-time analysis. Finally, our approach
is totally unsupervised, meaning that we do not need any training set to find the method’s parameters and that
it can be applied as is to any FLAIR dataset.

We use a modified GMM-EM method as means of obtaining an initial unsupervised classification of the brain
into three tissues. We observe that this approach improves the first WMH segmentation and reduces the class
overlap, when compared to the traditional GMM-EM method.

We also show the limitations of considering a T1 segmentation for correcting the false positives. The T1-based
false positive mask is not only incorrect due to the presence of a diffuse lesion but it also does not consider some
of the false positives located at the CSF/GM interface.

A preliminary evaluation on six patient datasets shows that the method is at least comparable to other
existing methods which require extra MRI modalities and, in some cases, a training set. The following step is
to perform a more extensive validation with a larger number of patients. In addition, a reproducibility study
would also be of interest. This consists of evaluating how stable the results are when the method is applied to
FLAIR acquisitions over time.
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