7 research outputs found
Neutrino follow-up with the Zwicky Transient Facility: Results from the first 24 campaigns
The Zwicky Transient Transient Facility (ZTF) performs a systematic neutrino
follow-up program, searching for optical counterparts to high-energy neutrinos
with dedicated Target-of-Opportunity (ToO) observations. Since first light in
March 2018, ZTF has taken prompt observations for 24 high-quality neutrino
alerts from the IceCube Neutrino Observatory, with a median latency of 12.2
hours from initial neutrino detection. From two of these campaigns, we have
already reported tidal disruption event (TDE) AT2019dsg and likely TDE
AT2019fdr as probable counterparts, suggesting that TDEs contribute >7.8% of
the astrophysical neutrino flux. We here present the full results of our
program through to December 2021. No additional candidate neutrino sources were
identified by our program, allowing us to place the first constraints on the
underlying optical luminosity function of astrophysical neutrino sources.
Transients with optical absolutes magnitudes brighter that -21 can contribute
no more than 87% of the total, while transients brighter than -22 can
contribute no more than 58% of the total, neglecting the effect of extinction.
These are the the first observational constraints on the neutrino emission of
bright populations such as superluminous supernovae. None of the neutrinos were
coincident with bright optical AGN flares comparable to that observed for TXS
0506+056/IC170922A, suggesting that most astrophysical neutrinos are not
produced during such optical flares. We highlight the outlook for
electromagnetic neutrino follow-up programs, including the expected potential
for the Rubin Observatory.Comment: To be submitted to MNRAS, comments welcome
Genome-Wide Associations for Microscopic Differential Somatic Cell Count and Specific Mastitis Pathogens in Holstein Cows in Compost-Bedded Pack and Cubicle Farming Systems
The aim of the present study was to detect significant SNP (single-nucleotide polymorphism) effects and to annotate potential candidate genes for novel udder health traits in two different farming systems. We focused on specific mastitis pathogens and differential somatic cell fractions from 2198 udder quarters of 537 genotyped Holstein Friesian cows. The farming systems comprised compost-bedded pack and conventional cubicle barns. We developed a computer algorithm for genome-wide association studies allowing the estimation of main SNP effects plus consideration of SNPs by farming system interactions. With regard to the main effect, 35 significant SNPs were detected on 14 different chromosomes for the cell fractions and the pathogens. Six SNPs were significant for the interaction effect with the farming system for most of the udder health traits. We inferred two possible candidate genes based on significant SNP interactions. HEMK1 plays a role in the development of the immune system, depending on environmental stressors. CHL1 is regulated in relation to stress level and influences immune system mechanisms. The significant interactions indicate that gene activity can fluctuate depending on environmental stressors. Phenotypically, the prevalence of mastitis indicators differed between systems, with a notably lower prevalence of minor bacterial indicators in compost systems
Identification of Thermophilic Aerobic Sporeformers in Bedding Material of Compost-Bedded Dairy Cows Using Microbial and Molecular Methods
Compost-bedded pack barns (CBP) are of increasing interest in dairy farming due to their positive effect on animal welfare. The temperature and the moisture content of the bedding material characterising the composting process can promote the growth of thermophilic aerobic sporeformers (TAS). Therefore, the aim of this study was to determine CBP bedding material characteristics, such as moisture content and temperature, and to determine TAS species. The dilution, the heat inactivation of all non-TAS species and the incubation of 13 bedding samples from four CBP groups resulted in a mean TAS amount over all samples of 4.11 log10 cfu/g bedding material. Based on the subsequent sequencing of parts of the 16S rRNA-gene of 99 TAS colonies, the TAS species Aneurinibacillus thermoaerophilus, Bacillus licheniformis, Geobacillus thermodenitrificans, Laceyella sacchari, Thermoactinomyces vulgaris and Ureibacillus thermosphaericus were identified. The moisture content of the bedding material, the relative humidity above the bedding material and the sampling season significantly affected the amount of TAS. The moisture content or relative humidity above the bedding material significantly influenced the concentration of Ureibacillus thermophaericus or Laceyella sacchari. Consequently, an optimal CBP management including a dry lying surface and an optimal composting process will contribute to a moderate microbial, especially TAS amount, and TAS species distribution