15 research outputs found

    Monitoring Deformation in Graphene Through Hyperspectral Synchrotron Spectroscopy to Inform Fabrication

    Get PDF
    The promise from graphene to produce devices with high mobilities and detectors with fast response times is truncated in practice by strain and deformation originating during growth and subsequent processing. This work describes effects from graphene growth, multiple layer transfer, and substrate termination on out of plane deformation, critical to device performance. Synchrotron spectroscopy data was acquired with a state-of-the-art hyperspectral large-area detector to describe growth and processing with molecular sensitivity at wafer length scales. A study of methodologies used in data analysis discouraged dichroic ratio approaches in favor of orbital vector approximations and data mining algorithms. Orbital vector methods provide a physical insight into mobility-detrimental rippling by identifying ripple frequency as main actor, rather than intensity; which was confirmed by data mining algorithms, and in good agreement with electron scattering theories of corrugation in graphene. This work paves the way to efficient information from mechanical properties in graphene in a high throughput mode throughout growth and processing in a materials by design approach

    Microscopic Relaxation Channels in Materials for Superconducting Qubits

    Full text link
    Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we perform measurements of transmon qubit relaxation times T1T_1 in parallel with spectroscopy and microscopy of the thin polycrystalline niobium films used in qubit fabrication. By comparing results for films deposited using three techniques, we reveal correlations between T1T_1 and grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Physical mechanisms connect these microscopic properties to residual surface resistance and T1T_1 through losses arising from the grain boundaries and from defects in the suboxides. Further, experiments show that the residual resistance ratio can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance

    Ultrathin Magnesium-based Coating as an Efficient Oxygen Barrier for Superconducting Circuit Materials

    Full text link
    Scaling up superconducting quantum circuits based on transmon qubits necessitates substantial enhancements in qubit coherence time. Among the materials considered for transmon qubits, tantalum (Ta) has emerged as a promising candidate, surpassing conventional counterparts in terms of coherence time. However, the presence of an amorphous surface Ta oxide layer introduces dielectric loss, ultimately placing a limit on the coherence time. In this study, we present a novel approach for suppressing the formation of tantalum oxide using an ultrathin magnesium (Mg) capping layer deposited on top of tantalum. Synchrotron-based X-ray photoelectron spectroscopy (XPS) studies demonstrate that oxide is confined to an extremely thin region directly beneath the Mg/Ta interface. Additionally, we demonstrate that the superconducting properties of thin Ta films are improved following the Mg capping, exhibiting sharper and higher-temperature transitions to superconductive and magnetically ordered states. Based on the experimental data and computational modeling, we establish an atomic-scale mechanistic understanding of the role of the capping layer in protecting Ta from oxidation. This work provides valuable insights into the formation mechanism and functionality of surface tantalum oxide, as well as a new materials design principle with the potential to reduce dielectric loss in superconducting quantum materials. Ultimately, our findings pave the way for the realization of large-scale, high-performance quantum computing systems

    Engineering of Niobium Surfaces Through Accelerated Neutral Atom Beam Technology For Quantum Applications

    Full text link
    A major roadblock to scalable quantum computing is phase decoherence and energy relaxation caused by qubits interacting with defect-related two-level systems (TLS). Native oxides present on the surfaces of superconducting metals used in quantum devices are acknowledged to be a source of TLS that decrease qubit coherence times. Reducing microwave loss by surface engineering (i.e., replacing uncontrolled native oxide of superconducting metals with a thin, stable surface with predictable characteristics) can be a key enabler for pushing performance forward with devices of higher quality factor. In this work, we present a novel approach to replace the native oxide of niobium (typically formed in an uncontrolled fashion when its pristine surface is exposed to air) with an engineered oxide, using a room-temperature process that leverages Accelerated Neutral Atom Beam (ANAB) technology at 300 mm wafer scale. This ANAB beam is composed of a mixture of argon and oxygen, with tunable energy per atom, which is rastered across the wafer surface. The ANAB-engineered Nb-oxide thickness was found to vary from 2 nm to 6 nm depending on ANAB process parameters. Modeling of variable-energy XPS data confirm thickness and compositional control of the Nb surface oxide by the ANAB process. These results correlate well with those from transmission electron microscopy and X-ray reflectometry. Since ANAB is broadly applicable to material surfaces, the present study indicates its promise for modification of the surfaces of superconducting quantum circuits to achieve longer coherence times.Comment: 22 pages, 7 figures, will be submitted to Superconductor Science and Technology Special Focus Issue Journa

    Diamond Surface Functionalization via Visible Light-Driven C-H Activation for Nanoscale Quantum Sensing

    Full text link
    Nitrogen-vacancy centers in diamond are a promising platform for nanoscale nuclear magnetic resonance sensing. Despite significant progress towards using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. NV molecular sensing requires that target molecules are immobilized within a few nanometers of NV centers with long spin coherence time. The inert nature of diamond typically requires harsh functionalization techniques such as thermal annealing or plasma processing, limiting the scope of functional groups that can be attached to the surface. Solution-phase chemical methods can be more readily generalized to install diverse functional groups, but they have not been widely explored for single-crystal diamond surfaces. Moreover, realizing shallow NV centers with long spin coherence times requires highly ordered single-crystal surfaces, and solution-phase functionalization has not yet been shown to be compatible with such demanding conditions. In this work, we report a versatile strategy to directly functionalize C-H bonds on single-crystal diamond surfaces under ambient conditions using visible light. This functionalization method is compatible with charge stable NV centers within 10 nm of the surface with spin coherence times comparable to the state of the art. As a proof of principle, we use shallow ensembles of NV centers to detect nuclear spins from functional groups attached to the surface. Our approach to surface functionalization based on visible light-driven C-H bond activation opens the door to deploying NV centers as a broad tool for chemical sensing and single-molecule spectroscopy

    Chemical profiles of the oxides on tantalum in state of the art superconducting circuits

    Full text link
    Over the past decades, superconducting qubits have emerged as one of the leading hardware platforms for realizing a quantum processor. Consequently, researchers have made significant effort to understand the loss channels that limit the coherence times of superconducting qubits. A major source of loss has been attributed to two level systems that are present at the material interfaces. We recently showed that replacing the metal in the capacitor of a transmon with tantalum yields record relaxation and coherence times for superconducting qubits, motivating a detailed study of the tantalum surface. In this work, we study the chemical profile of the surface of tantalum films grown on c-plane sapphire using variable energy X-ray photoelectron spectroscopy (VEXPS). We identify the different oxidation states of tantalum that are present in the native oxide resulting from exposure to air, and we measure their distribution through the depth of the film. Furthermore, we show how the volume and depth distribution of these tantalum oxidation states can be altered by various chemical treatments. By correlating these measurements with detailed measurements of quantum devices, we can improve our understanding of the microscopic device losses

    Confinement-Induced Reduction in Phase Segregation and Interchain Disorder in Bulk Heterojunction Films

    No full text
    The effects of thin-film confinement on the material properties of ultrathin polymer (electron donor):fullerene (electron acceptor) bulk heterojunction films can be important for both fundamental understanding and device applications such as thin-film photovoltaics. We use variable angle spectroscopic ellipsometry and near edge X-ray absorption fine structure spectroscopy to measure the optical constants, donor–acceptor volume fraction profile, and the degree of interchain order as a function of the thickness of a poly(3-hexythiophene-2,5-diyl) and phenyl-C61-butyric acid methyl ester bulk heterojunction film. We find that as the thickness of the bulk heterojunction film is decreased from 200 nm to the thickness confinement regime (less than 20 nm), the vertical phase segregation gradient of the donor and acceptor phases becomes less pronounced. In addition, observing the change in exciton bandwidth and the shift of absorption resonances (0–0 and 0–1) relative to neat donor and acceptor films, we find that the conjugation length and disorder in ultrathin films (20 nm) are less affected than thicker (200 nm) films by the addition of fullerene into the polymer. We believe that these findings could be important for discovering methods of precisely controlling the properties of bulk heterojunction films with crucial implications for designing more efficient organic-based photovoltaics
    corecore