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ABSTRACT 

The promise from graphene to produce devices with high mobilities and detectors with fast 

response times is truncated in practice by strain and deformation originating during growth and 

subsequent processing. This work describes effects from graphene growth, multiple layer 

transfer, and substrate termination on out of plane deformation, critical to device performance. 

Synchrotron spectroscopy data was acquired with a state-of-the-art hyperspectral large-area 

detector to describe growth and processing with molecular sensitivity at wafer lengthscales. A 

study of methodologies used in data analysis discouraged dichroic ratio approaches in favor of 

orbital vector approximations and data mining algorithms. Orbital vector methods provide a 

physical insight into mobility-detrimental rippling by identifying ripple frequency as main actor, 

rather than intensity; which was confirmed by data mining algorithms, and in good agreement 

with electron scattering theories of corrugation in graphene. This work paves the way to efficient 

information from mechanical properties in graphene in a high throughput mode throughout 

growth and processing in a Materials by Design approach. 

INTRODUCTION 

The remarkable properties of graphene have attracted vast attention from both academia and 

industry, making the material a prime candidate for applications in optoelectronics, sensors, and 
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 3

flexible electronic devices, amongst others.1-4 On these lines, recent progress in 2D materials 

beyond graphene is generating expectation to improve optical modulators and advanced terahertz 

communications in the realm of photonics.5-7 Regardless of the application space, the maturity of 

graphene technologies is still at early stages. Indeed, although high-quality graphene can be 

epitaxially grown on silicon carbide (SiC) substrates, high costs limit mass production.8 Further, 

adequate flexibility on fabrication paradigms needs of transferred graphene from the initial 

growth substrate, typically SiC or copper (Cu), while maintaining its pristine properties.9 It is 

therefore critical to characterize graphene systems produced via affordable, mass-production 

prone methods such as chemical vapor deposition (CVD), which are low-cost and better support 

this transfer process.10, 11 At present, theoretical properties of graphene are far from being 

reached experimentally due to defects and perturbations in the pristine sp2 structure.12 It is well 

established that out-of-plane deformation (i.e. rippling) and in-plane strain in graphene are 

initially introduced during high-temperature growth.13, 14 Upon cooling, mismatch in thermal 

expansion coefficient between graphene and growth substrate produces a compressed structure,13 

which is stabilized through the nucleation of intrinsic ripples and strain.15, 16 Post-growth 

processing of graphene systems can introduce further in-plane strain upon transfer onto non-

native substrates and increase deformation.16-19 These effects are of crucial importance, in 

particular for electronic applications, as strain fluctuations limit carrier mobility in detriment to 

operational devices,14 promoting the need for reliable characterization techniques. Clearly, 

substrates play a role in the amount of strain in transferred graphene, either in plane or derived 

from out-of-plane deformation. The importance of substrate effects has been highlighted 

earlier.14 Substrate effects are attributed to imperfect adhesion during transfer and overall 

deformation on the substrate that will induce forces on the atoms in the graphitic structure, which 
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 4

results in strain and deformation. With all, the overall strain that transferred graphene is under is 

inflicted through a variety of mechanisms, from the transfer process itself—often in harsh 

environments—to defects and impurities on the substrate, and even from incommensuration 

between graphene and substrate.14  

In this work, we apply a Materials by Design approach to graphene CVD fabrication and 

subsequent transfer to address fabrication-induced out of plane deformation effects in a 

quantitative fashion.20 In this scheme, we will make use of ab initio calculations to produce a 

mathematical graphene standard that will be compared to five experimental systems: epitaxially-

grown graphene on SiC, as well as single and four monolayers graphene grown via CVD on Cu, 

and subsequently transferred to both silicon- and carbon-terminated SiC (SLG/SiC-Si, SLG/SiC-

C, 4LG/SiC-Si, 4LG/SiC-C). This experimental design will establish a baseline in two realms; 

first with respect to the theoretical standard, and second with respect to the epitaxially grown 

graphene on SiC, hence justifying the selection of these substrates. Multiple layer graphene is an 

additional variable here, known to enhance conductivity,21 where a multiplicity of stacking 

geometries enables tailoring of band structures.22 In this scenario, initially nucleated deformation 

might propagate throughout the graphene stack or further relax depending on subsequent 

substrate interactions.  

 

EXPERIMENT 

Angle-resolved hyperspectral NEXAFS spectroscopy 

The synchrotron technique of choice is Near Edge X-Ray Fine Structure (NEXAFS) 

spectroscopy,23  which has been used to study chemical and electronic structure of a wide range 

of systems, from organic semiconductors,24 to polymer composites;25, 26 NEXAFS has also 
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 5

proven a valuable tool for the quantitative determination of molecular orientation.27-29 In 

particular, the ability of this technique to measure molecular orientation makes it ideal in the 

study of graphene deformations.10 The value brought forward by monitoring π* intensity 

orientations rests upon the notion that out-of-plane deformations perturb the original orientation 

and distribution of the orbitals.17, 26 Additionally, although not analyzed in the present study, in-

plane strain in graphene can also be characterized with NEXAFS, as changes in bond lengths 

generate energy shifts in the σ* resonance.27  

Notably, the high sensitivity of NEXAFS spectroscopy can now be deployed to large areas (at 

the mm scale) with resolutions at the micron-scale, due to the advent of hyperspectral large area 

detectors such as the large-area rapid imaging analysis tool (LARIAT, Synchrotron Research 

Inc.) used in this work (Figure 1a).30, 31 Details about the NEXAFS detector are provided in the 

Supporting Information. This development will prove essential towards informing industrial 

graphene manufacturing.11, 20 Clearly, stacking and NEXAFS measurements of multiple 

transferred layers will add to the complexity ingrained in single layer effects. With all, a 

parametric quantification of the overall out-of-plane deformation will be possible through 

specifically designed data analytics, developed in this work. On those lines, fast acquisition of 

hyperspectral files results in large data sets—systems imaged at every energy interval (Figure 

1b), yielding a spectrum corresponding to each pixel—which need of specific data treatment 

towards adequate exploitation, i.e. data reduction towards information extraction yielding an out-

of-plane deformation parameter. To this end, we critically evaluate analytical data methodologies 

in NEXAFS spectroscopy to ultimately identify and quantify out of plane deformation effects at 

wafer lengthscales with molecular sensitivity. 
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 7

Figure 1. Acquisition of hyperspectral NEXAFS image stacks. a) The sample is placed within a 

uniform 1 T magnetic field which confines electron trajectories. The photon beam is wobbled up 

and down to provide full-field illumination for each incident photon energy. Emitted Auger 

electrons travel along the magnetic field lines, through a high-pass filter and a channel plate. 

Generated electron pulses are impinged on a phosphor-coated fibre-optic feedthrough, which is 

imaged with a CCD camera. b) The sample (here, epitaxially-grown graphene) is imaged at each 

photon energy interval—each pixel in the stack represents an individual spectrum. c) Tilting the 

stage to acquire NEXAFS at various angles results in spatially-uncorrelated stacks. d) Stacks 

from different angular acquisitions are manually corrected by correlating pixels to a reference 

using the LDF software. 

The ability to collect data at various incidence angles by tilting the sample stage offers a 

unique opportunity to study the spatial distribution of out-of-plane deformation in angle-resolved 

images (Figure 1c).17 For hyperspectral detection, perspective distortions in images resulting 

from stage tilting need to be corrected in order to perform accurate angular characterization of 

particular ROIs. This is achieved by fiducial mark alignment in images throughout all angular 

acquisitions (Figure 1d), which is performed by the Lariat Data Figure (LDF) software 

(Synchrotron Research Inc.). The procedure results in a hyperspectral energy-angle superstack: a 

spatially-linked series of hyperspectral energy stacks (or ‘stacks’ for short) for every system 

(Figure 2a). In each superstack, we ensure that spectra are extracted from identical areas 

throughout angular acquisitions (Figure 2b). 
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 9

Figure 2. Alignment and perspective correction of experimental data to enable precise ROI 

correlation between angular acquisitions, and NEXAFS scans of graphene systems under study. 

a) Post-correction, a hyperspectral energy-angle superstack is assembled for each experimental 

system, consisting of a hyperspectral energy stack for every acquisition angle. Superstacks are 

thus functions of spatial x and y coordinates, photon energy, intensity, and acquisition angle.  b) 

Schematic representation of data extraction: angular spectra acquired from a precise area in a 

graphene system, with energy E2 representing the π* resonance. c) SLG/SiC-Si, d) 4LG/SiC-Si, 

e) SLG/SiC-C, f) 4LG/SiC-C. Images tuned around 284.7 eV, and acquired at 30°, rendering 

intense π* resonances. ROIs are 1 mm × 1 mm, and each pixel is ~ 40 µm. 

EXPERIMENTAL SECTION 

Synthesis 

Graphene monolayers were grown on Copper foil by chemical vapor deposition (CVD) 

method in a tube furnace (OTF-1200x-STM, MTI Corp, CA) equipped with a scroll vacuum 

pump. Whilst the Cu foil was heated up to 1000 °C, hydrogen gas was injected at 125 mTorr for 

30 min, followed by injection of methane gas at 1.25 Torr for a further 30 min; the furnace was 

then cooled down to room temperature while the flow of hydrogen and methane remained. 

Transfer onto SiC substrates was achieved using a thermal release tape (Nitto Americas Inc., 

CA). The tape was placed over the graphene-coated Cu foil, followed by oxygen plasma 

treatment for 5 min. The ensemble was then etched in (NH4)2S2O8 solution for 2 hr, rinsed with 

deionized water, and dried with N2. The SiC/graphene/thermal release tape was then heated at 

125 °C to release single monolayers onto the substrate. Following this procedure, graphene 

single monolayer / four monolayers were transferred onto both Si- and C-terminated SiC.  
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 10

Epitaxial graphene was grown on commercial nominally on-axis oriented 6H–SiC(0001) 

(SiCrystal AG, Germany). Prior to epitaxy, surface polishing damage was removed through 

etching in hydrogen for 15 min. at 1 bar and 1550 °C. Epitaxial growth was performed in a 

vertical cold-wall reactor with a double-walled, water-cooled quartz tube and a graphite 

susceptor in a slow flow of argon (purity 5.0). Heating and cooling rates were 2–3 ◦C per second. 

Typical annealing time was 15 min. 

 

Characterization 

For Helium Ion Microscopy characterization, untreated CVD-grown graphene was transferred 

to a SiNx grid and imaged in an ORION Plus He-IM Zeiss at 35kV with the assistance of a flood 

gun to prevent surface charging. 

Hyperspectral near-edge X-ray absorption fine structure (NEXAFS) data were collected at 

NIST beamline U7A, located at the National Synchrotron Light Source, Brookhaven National 

Laboratory, using a large area rapid imaging analytical tool (LARIAT, Synchrotron Research 

Inc.). Spectra were recorded at the Carbon K-edge in partial electron yield mode. By tilting the 

sample, acquisitions for each system were made at 30°, 45°, 50°, 54°, 60°, 85°, and 90° 

incidence of the X-rays to the plane of the sample. A full field electron spectrometer produces a 

stack of two-dimensional NEXAFS images; full spectra can then be extracted from individual 

pixels. 

Hyperspectral images were angle-corrected using the LDF software (Synchrotron Research 

Inc.) to enable spectra extraction at various incidence angles from corresponding areas in each 

graphene system. Spectra normalisation was performed on the same software. Five 1 mm x 1 
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 11

mm regions of interest (ROIs) were analysed in each system, as well as the enclosing 3 mm x 3 

mm ROI. 

 

COMPUTATIONAL DETAILS 

Free-standing graphene primitive unit cell of 2 carbon atoms with lattice parameter of 2.465 Å 

was relaxed by using plane-wave density functional theory (DFT) under the general-gradient 

approximation (GGA) of Perdue-Burke-Ernzerhof (PBE) exchange-correlation functional 

implemented in Quantum ESPRESSO suite within the pseudopotential approximation.32-34 We 

employed ultrasoft pseudopotentials (C.pbe-van_ak.UPF), energy cutoff of 30 Ry for plane wave 

basis set and 300 Ry for charge density, a k-sampling grid in the Monkhorst-Pack scheme of 

30x30x1, total energy tolerance of 10-6 and vacuum of ~20 Å along the Z-axis to avoid 

interactions between periodic images. Atomic forces at equilibrium position were converged 

below the 0.01 eV/Å threshold.  

Our input to perform NEXAFS spectra simulations is a periodic 10x10 supercell size 

containing 200 carbon atoms. Ab initio NEXAFS spectroscopy calculations at C K-edge were 

modelled in the framework of the excited electron and core-hole (XCH) approximation,35 and 

spectra were projected for angles of incidence of 0°, 10°, 20°, 30°, 35°, 40°, 45°, 54°, 60°, 65°, 

75°, 85° and 90.  In order to simulate the excitation of the carbon atom due to the X-ray, one 

electron from the 1s level of the carbon pseudopotential has been removed. One carbon atom 

from the supercell has been used to calculate the unoccupied states under the pseudopotential 

approximation that includes the core-hole interactions. XCH-NEXAFS used the PBE form for 

the exchange–correlation potential within GGA approximation. 
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RESULTS AND DISCUSSION 

In this study, hyperspectral NEXAFS maps of epitaxial graphene (Figure 1b), as well as 

SLG/SiC-Si, SLG/SiC-C, 4LG/SiC-Si, and 4LG/SiC-C (Figure 2c-f) were acquired at various 

incidence angles, following the procedure highlighted in Figure 2a. Images Fig 2c-f correspond 

to the 1s→π* transitions around 284.7 eV, taken from the 30° stacks, where these features show 

highest π* intensities for flat graphene.36 Full extracted experimental spectra from Fig 2c-f 

(transferred graphene) and Fig 1b (epitaxial graphene) as well as the theoretical standard spectra, 

are shown in Figure 3. Angular intensity trends are shown in Fig 3, which will be investigated 

towards out-of-plane deformation analysis. Confirming predominantly flat graphene, π*C=C
 

resonance intensities (at 284.7 eV) are minimal when the incoming beam is at 90° to the 

substrate, and decrease with incidence angle, whilst σ*C-C resonance intensities (at ~291 eV) 

exhibit the opposite trend.36 Due to the low variability on the π*C=C intensities, SLG/SiC-C is not 

considered in our data analysis—this, and additional spectral resonances in each sample, are 

described in more detail in the Supporting Information. 
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Figure 3. Extracted angle-resolved Carbon K-edge NEXAFS spectra. a) SLG/SiC-Si, b) 

4LG/SiC-Si, c) SLG/SiC-C, d) 4LG/SiC-C, e) epitaxial graphene, f) Theoretical freestanding 

graphene. Resonances described in detail in the Supporting Information. 

For the analysis of out of plane deformation it is necessary to establish a baseline which 

excludes all angular-independent contributions.28 To this end, angle-resolved ab initio NEXAFS 
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spectra of pristine graphene were computed. A top level workflow describing calculations is 

shown in Figure 4a. Briefly, the excited state is treated through constrained Density Functional 

Theory (DFT) following the excited electron and core hole (XCH) approach implemented in the 

Shirley code.35 The transitions are calculated using Fermi’s Golden Rule. Angular projections are 

performed according to the geometric coordinates defined in Figure 4b. 
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Figure 4. Theoretical angular-resolved NEXAFS calculation algorithm, and π* and σ* 

intensities plotted against cos2θ and sin2θ respectively for both theoretical and experimental 

graphene systems. a) Following geometry optimization to find the most energetically stable 

structure, the ground state is computed through standard DFT, whilst the excited state is 

computed through constrained DFT following the excited electron and core hole (XCH) 

approximation. NEXAFS spectra are calculated using Fermi’s Golden Rule. b) Spectra are then 

projected for various beam polar angles (θ); geometric definitions also show π* vector described 

by angles α and ϕ, as used in the orbital vector approximation. c) Dichroic ratios of theoretical 

graphene, epitaxial graphene, SLG/SiC-Si, 4LG/SiC-Si and 4LG/SiC-C computed from 3 mm x 

3 mm ROIs are -1, -0.93, -0.94, -0.94, and -0.97, respectively. Full results presented in Table S1, 

Supporting Information. d) π* NEXAFS intensities fitted with Eq. 2. Fitting parameter α from 3 

mm x 3 mm ROIs resulted in 0 for theoretical graphene, 11.8 for epitaxial graphene/SiC, 7.2 for 

SLG/SiC-Si, 7.9 for 4LG/SiC-Si, and 5.5 for 4LG/SiC-C. Full results are presented in Table I. 
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Dichroic ratio 

A common approach for semi-quantitatively identifying out-of-plane deformation in graphene 

is through the dichroic ratio (DR), which compares intensities at orthogonal acquisition angles, 

and is computed following Equation 1.17, 37, 38  

�� =
����°	��°


����°���°

   (1) 

This approach can be applied to both π* and σ* intensities, as they follow linear and 

orthogonal trends with cos2
θ and sin2

θ. Analysis of σ* intensities in graphene is complex, 

however, as carbonaceous impurities adsorbed on experimental systems also contribute to the 

spectral fingerprint. Thus, π* intensities are used here. As described by Equation 1, π* intensities 

will render DR=-1 for a system with π* orbitals perfectly oriented normal to the plane (as in 

pristine graphene) and DR=0 when orbitals are isotropically arranged. 

Fitted π* intensities of theoretical graphene and experimental spectra extracted from 3 mm x 3 

mm ROIs are shown in Figure 4c. Theoretical standard confirms a DR of -1 for pristine 

graphene, as expected. Results (Table S1, Supporting Information) indicate that in this instance 

epitaxial graphene has the largest deformation, yielding the lowest numerical value of  DR, while 

4LG/SiC-C has the least deformation, with the highest numerical value of DR, followed by both 

SLG/SiC-Si and 4LG/SiC-Si, rendering identical DRs. The difference in ratios between all 

systems (and ROIs within systems) is low, however, suggesting this method suffers from poor 

molecular sensitivity at these high extents of substrate alignment. Indeed, every ROI in 

SLG/SiC-Si resulted in DR=-0.94, while clear differences can be observed in the π* maps for 

that system in Figure 2c. Being insensitive to fine out of plane deformation at the length-scale 

under study, the dichroic ratio can only provide a descriptive indication of relative π* orbital 

alignment, and the method is therefore unsuitable for comprehensive analytics at wafer level.  
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Orbital vector approximation 

Following the procedure first outlined by Stöhr,27 orientation and alignment of small molecules 

has been quantitatively determined by classing π* and σ* orbitals as either vectors or planes, 

according to their geometry.28, 39, 40 In this model, π* orbitals in graphene are classed as vectors 

normal to the plane. NEXAFS intensities of these orbitals are a function of acquisition angle θ 

which—in a system with threefold or higher symmetry—follow Equation 2, where α is the polar 

angle of the vector-like orbital, as depicted in Figure 4,27 and the azimuth φ is absent in the 

expression due to symmetry considerations. Indeed, a single sheet of graphene will result in one 

single orientation with respect to the substrate upon transfer. In an initial approximation, 

ignoring local perturbations from rippling that will be modelled through α, the azimuth angle is 

chosen to be zero. In addition, the parameter c was included to account for π* intensity variations 

in highly delocalized systems which combine with additional signals provided by adjacent 

unperturbed areas. 

I(θ) = c + A (cos2
θ cos2

α + sin2
θ sin2

α + 2 sinα cosα sinθ cosθ) (2)  
 

In 2D materials like graphene, out-of-plane deformation produces perturbed orbitals affected 

throughout multiple atoms in a typically asymmetric rippling configuration, as demonstrated in 

the Helium Ion micrograph (Figure S3a-b, Supporting Information). We have used DFT 

approaches to calculate the NEXAFS spectra of individual atoms along an asymmetric ripple. 

Under this method, such deformations produce non-zero α and c values resulting from local 

rippling (Table I and Figure S3c-d Supporting Information), even though the graphene is 

predominantly flat on the substrate. Since NEXAFS cannot distinguish between local disorder 

and molecular tilting, the  α and c values extracted here embed information related to both 

homogeneity and magnitude of corrugations. These findings suggest that the orbital vector 
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approximation is promising in the characterization of rippling effects in graphene, where α  and 

c are providing physical interpretation on frequency and intensity of rippling phenomena, as 

discussed below.  

Equation 2 was fitted in OriginPro 9, using the Levenberg-Marquardt algorithm. Figure 4d 

shows π* intensities of theoretical graphene, which, as expected, produces α=c=0. Experimental 

systems fitted with Eq. 2 are also shown in Figure 4d. Earlier studies have shown that small 

errors systematically introduced when extracting π*intensities from NEXAFS spectra can have 

important consequences on the resulting α values.41 However, the α  and c values obtained from 

different ROIs form distinct clusters for each experimental graphene system (Table I). Resulting 

α parameters from each analyzed ROI are depicted in Figure 5. 
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Table I. Results of orbital vector approximation method, showing the results of the orbital 

vector approximation method, described by equation 2. Here, * intensities from representative 

3 mm ROI from each system and the vector approximation fits are shown in Figure 4d. 

System ROI α (deg.) 
R-

Squared 
mean s.d. 

c R-Squared mean s.d. 

Theoretical 
graphene 

-- 0 1 0 0 0 1 0 0 

Epitaxial 

1 10.8 0.9943 

11.66 1.27 

-0.035 
 

0.9942 
 

  

2 10 0.9936 
0.006 

 
0.9936 

 
  

3 11.8 0.9909 
-0.037 

 
0.9908 

 
-0.0366 0.0120 

4 12.8 0.9896 
-0.063 

 
0.9896 

 
  

5 12.9 0.9904 
-0.054 

 
0.9904 

 
  

3mm 11.3 0.9927     
-0.028 

 
0.9927   

SLG/SiC-Si 

1 8.1 0.999 

7.19 0.87 

0.239 
 

0.9990 
 

  

2 8 0.9983 
0.248 

 
0.9983 

 
  

3 6.9 0.9986 
0.260 

 
0.9987 

 
0.2520 0.0086 

4 6 0.9992 
0.254 

 
0.9992 

 
  

5 6.9 0.9998 
0.259 

 
0.9999 

 
  

3mm 7.1 0.9983 
  

0.255 
 

0.9983 
 

  

4LG/SiC-Si 

1 8.1 0.997 

7.61 0.59 

0.253 
 

0.9970 
 

  

2 7.6 0.9967 
0.269 

 
0.9967 

 
  

3 6.7 0.9981 
0.325 

 
0.9981 

 
0.2883 0.0282 

4 8.1 0.9975 
0.303 

 
0.9975 

 
  

5 7.6 0.9974 
0.291 

 
0.9974 

 
  

3mm 7.8 0.9979     
0.275 

 
0.9978 

 
  

4LG/SiC-C 

1 4.4 0.9954 

5.63 1.09 

0.293 
 

0.9954 
 

  

2 4.4 0.9942 
0.274 

 
0.9942 

 
  

3 6.4 0.9884 
0.278 

 
0.9884 

 
0.2852 0.0222 

4 6.3 0.9916 
0.320 

 
0.9916 

 
  

5 6.6 0.9881 
0.261 

 
0.9881 

 
  

3mm 5.4 0.9917     
0.281 

 
0.9917 
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 20

 

In fact, Figure 5 also shows a data treatment routine suitable for incorporation in large area 

substrates and high throughput industrial environments. For optimal speed, not only in data 

acquisition but also in data processing, it is paramount that reductive analytic techniques are 

designed and implemented. Here we propose the analysis of selected 1 mm x 1 mm ROIs to be 

compared to the analysis of overall 3 mm x 3 mm ROIs (Figure 5a). In this scheme, zero-level 

data reduction (integration) represents the capabilities of standard, non-hyperspectral NEXAFS 

spectroscopy, where all the bulk data is being analyzed, hence taxing manufacturing decision 

making turnaround. Along these lines, the corrugation map (Figure 5b) has been constructed 

from α values resulting from analysis of 3 mm x 3 mm ROIs i.e. the whole scanned area. This 

zero-level data reduction (integration) indicates that, at this length scale, and in agreement with 

the dichroic ratio, epitaxial graphene is the system with the most out of plane deformation, with 

4LG/SiC-Si, SLG/SiC-Si and 4LG/SiC-C decreasing α, indicating less corrugation. In contrast to 

the dichroic ratio, however, this method proves to be significantly more sensitive to out-of-plane 

deformation variations. And in fact, despite the goodness of fit for both parameters, as shown in 

the R-squared values, this sensitivity seems enhanced for α versus c variations. Indeed, only 

meaningful variation arises from comparing the c values between epitaxial and transferred, as 

shown in Table I. Similarly to the treatment applied to the α parameter, individual c values are 

provided for the 5 ROIs in each sample, from where mean and standard deviation are calculated. 

Data in Table I shows that amongst the transferred systems, mean c values overlap within the 

brackets of their standard variation, as seen in Table I, and only a net variation is observed 

between the lower c values of epitaxial and the higher c values from transferred systems, as a 
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collective. Given the increased sensitivity of α values, further data analytics have been deployed 

with the purpose of increasing information output from this data set. 

 

Figure 5. α maps constructed from results of orbital vector approximation. a) NEXAFS π* 

intensities, b) αs from 3 mm x 3 mm ROIs (zero-level data reduction), c) αs from ROIs 1-5 

(first-level data reduction), d) mean αs and standard deviations from ROIs 1-5 (second-level data 

reduction). Intensity scale in a) is 0-1.9 for epitaxial graphene/SiC, and 0-1.4 for the other three 

systems. 
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In Figure 5c, we have only considered α values resulting from analysis of 1 mm x 1 mm ROIs. 

In this scenario, we are only sampling a portion of the overall available data (non-shaded areas in 

Figure 5a). Values of α in ROIs 1-5 in each sample (Figure 5c) represent the first-level data 

reduction (segmentation), consistent with the data discussed in ROIs 1-5 in Table I. 

Segmentation here reveals a significantly increased sensitivity to local out-of-plane deformation 

variations compared to the dichroic ratio, most pronounced in SLG/SiC-Si, where every ROI 

produced the same DR, but different values of α. 

In the second-level data reduction, extrapolation (Figure 5d), the segmented analysis from 

Figure 5c is extrapolated from the selected 1 mm x 1 mm ROIs to the overall 3 mm x 3 mm ROI. 

By comparing Figures 5b and d, we conclude that the data segmentation strategy has 

successfully minimized data load whilst still informing on the overall 3 mm x 3 mm ROI 

(validation). Mean αs and standard deviations were computed from α values at ROIs 1-5, and 

they are also shown in Figure 5d.  

The representations in Figure 5 clearly show a trade-off in terms of choice of target substrate: 

in absolute terms, 4LG/SiC-C is the system under least corrugation but shows the least 

homogeneity across the wafer; conversely, SLG/SiC-Si and 4LG/SiC-Si show more corrugation, 

but show the most homogeneous deformation distribution. The dynamics of growth on each SiC 

termination are well documented;9 here we highlight the importance of substrate termination 

upon graphene transfer, with a homogenous but higher out-of-plane deformation level for Si-

termination on a four-layer transfer.   

As mentioned above, the meaning of α as measured in graphene π* intensities is complex. 

Initially, α had been derived as the overall angle in a molecular collective; such as Langmuir-

Blodgett monolayers.28 In the present scenario, α is revealing combined information of local flat 
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areas intertwined with ripples, therefore informing of frequency and intensity of such events in 

some fashion. Clearly, a lower α is desired, as demonstrated by theoretical graphene. But what 

phenomena will increase this value? We believe that in fact, a larger α in graphene is indicative 

of higher frequency of out-of-plane deformation, rather than the intensity of such events, i.e. the 

size of ripples or of macroscopic scratches from processing. Indeed, scratches observed in ROI 3 

and 5 in epitaxial graphene don’t have a large impact in the overall α as compared with ROI 2, 

with less frequent scratches, as seen in Figure 5c. This is further explored in the next section. 

 

Density-based spatial clustering of applications with noise (DBSCAN) 

The previous sections described the analysis of angular-dependent π* intensities within 

integrated ROIs two orders of magnitude larger than the detector resolution. This final section 

describes unsupervised analysis of larger graphene areas sampled at the pixel level (40 um) using 

Density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm.42 

DBSCAN is, by now, a well-established algorithm. An important advantage of DBSCAN is the 

minimal a piori knowledge of the system required and its robustness to noise. Liu and co-

workers successfully employed this data-mining technique to hard X-ray XANES of Nd2Fe14B.43 

Here, we proactively apply DBSCAN to soft X-ray hyperspectral NEXAFS images to cluster 

based on pixel π* intensities acquired at 30°. In this way, out of the two resulting clusters, the 

one with highest π* intensities indicates the most pristine graphene. Prior to clustering, image 

stacks were cropped and normalised using TXM Wizard.44 DBSCAN maps and spectra of 

resulting clusters are shown in Figure 6. 
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Figure 6. DBSCAN clustering based on π* intensity. Cluster maps indicate 4LG/SiC-C has the 

most pristine graphene. Maps also suggest two distinct length scales of out-of-plane 

deformations. Black squares indicate the location of 3 mm x 3 mm ROIs analyzed in the 

previous sections. 

Some features in epitaxial graphene (Figure 6) are likely to be scratches—caused by 

processing and handling—which resulted in local changes in orientation, hence producing π* 

resonances of lower intensities. For the most part, epitaxial graphene shows a dense mixture of 

both clusters, suggesting the physical variations (ripples) in the graphene have lenghtscales 

below the detector resolution (40 µm) and that they are very frequent.13, 19 Indeed, since each 

pixel is assigned a fraction weight of each cluster, each pixel is rated higher or lower quality 

depending on the frequency of sub-pixel defects. In contrast to the transferred systems, there are 

no pure areas consisting of only one cluster: consistent with findings from dichroic ratio and 

orbital vector approximation methods. This further demonstrates that in this scenario, epitaxial 
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graphene is the least pristine graphene in terms of rippling. Indeed, epitaxially-grown graphene 

suffered from out of plane deformation originating during the cooling-off stage of high-

temperature growth. In addition, single-atomic layers typically grow on imperfect SiC substrates 

containing many terraces of a 0.5 nm typical step-height.8 During growth, graphene conforms to 

these terraces, deforming the π  structures which directly lower electron mobility.8 

Cluster maps of transferred systems on Si termination show less spotty, well-defined phases. 

Within the red clusters, lines are seen in a uniform arrangement, revealing ripples of ~100 µm in 

size, formed due to either imperfect graphene-substrate contact during transfer, or to water drain 

channels during etching and rinsing.19, 45 Though the maps are dominated by the red cluster 

showing least pristine graphene, the clusters are well segregated, suggesting local homogeneity 

(unlike in epitaxial graphene). For this reason, large-scale ripples are therefore less likely to 

negatively impact mobilities than the nanometer-scale ripples from epitaxial growth. Further, the 

contrast in ripple size between epitaxial and transferred graphene leads to the hypothesis that it is 

frequency of ripples, rather than ripple magnitude, that contributed to α in the orbital vector 

approximation method. On a similar note, given the reverse behavior of the c parameter, where c 

values increase with the level of processing, and since both c and α parameters provide in some 

measure information on ripple magnitude and frequency; data suggest that the c parameter could 

be preferentially informing on ripple magnitude.  

DBSCAN maps suggest 4LG/SiC-C is the most pristine graphene system in terms of out-of-

plane deformation. Indeed, the map of this system is dominated by the blue cluster, with the 

highest π* intensity. Further, the ripples seen in SLG/SiC-Si and 4LG/SiC-Si do not appear in 

4LG/SiC-C. These observations are in agreement with findings from the prior methods, where 

4LG/SiC-C resulted in both the lowest dichroic ratio, and lowest α. In this scenario, epitaxial 
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graphene/SiC showing the highest α and lowest c suggests that either indeed ripple frequency is 

a dominant mode versus ripple magnitude or that growth was suboptimal.  

 

In fact, according to electron scattering studies,12 thermally-created ripples, i.e. nanometer size, 

have long-range scattering character,15 highly impacting carrier mobility in graphene. However, 

substrate-induced corrugations i.e. up to microns in size imply a short-range scattering 

potential,19 and consequently are less impactful to carrier mobilities. These findings complete the 

structure-property description of α,  that follows the same dependence as mobility on defect 

frequency rather than size, and therefore becomes a good candidate to correlate deformation and 

performance at wafer scale with molecular sensitivity.  

 

CONCLUSIONS 

Summarizing, the work described here critically examined data treatment methods for 

characterization of out of plane deformation in graphene, critical to mobilities, through the 

combination of experimental hyperspectral NEXAFS data and ab-initio calculations. Though all 

methodologies agree that epitaxial graphene is the most defective system and 4LG/SiC-C the 

most pristine, the orbital vector approximation method—used here to analyze a large crystal 

system for the first time—proved significantly more sensitive to fine-scale corrugation. 

DBSCAN confirmed the results and revealed different deformation length-scales, suggesting 

values of α in the orbital vector approximation are more influenced by frequency of defects 

rather than by their magnitude, in good agreement with the reported phenomena behind carrier 

mobility in graphene. These findings pave the way towards the correlation of out of plane strain 
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and carrier mobility through the assessment of the parameter α in a high throughput fashion at 

wafer scales. 

Successful development of the proposed methodology requires characterization of both 

theoretical and experimental standards to build a library that will allow for adequate 

discrimination of out-of-plane deformation through a multiplicity of layers, not only in graphene, 

but in other 2D systems. 

 

Supporting Information. Full tabulated results and further discussion of Dichroic ratio method 

and Orbital vector approximation method are available as a Word document. 
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Figure 1. Acquisition of hyperspectral NEXAFS image stacks. a) The sample is submerged in a uniform 1 T 
magnetic field which confines electron trajectories. The photon beam is wobbled up and down to provide 
full-field illumination for each incident photon energy. Emitted Auger electrons travel along the magnetic 

field lines, through a high-pass filter and a channel plate. Generated electron pulses are impinged on a 
phosphor-coated fibre-optic feedthrough, which is imaged with a CCD camera. b) The sample (here, 

epitaxially-grown graphene) is imaged at each photon energy interval—each pixel in the stack represents an 
individual spectrum. c) Tilting the stage to acquire NEXAFS at various angles results in spatially-uncorrelated 

stacks. d) Stacks from different angular acquisitions are manually corrected by correlating pixels to a 
reference using the LDF software.  
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Figure 2. Alignment and perspective correction of experimental data to enable precise ROI correlation 
between angular acquisitions, and NEXAFS scans of graphene systems under study. a) Post-correction, a 

hyperspectral energy-angle superstack is assembled for each experimental system, consisting of a 

hyperspectral energy stack for every acquisition angle. Superstacks are thus functions of spatial x and y 
coordinates, photon energy, intensity, and acquisition angle.  b) Schematic representation of data 

extraction: angular spectra acquired from a precise area in a graphene system, with energy E2 representing 
the π* resonance. c) SLG/SiC-Si, d) 4LG/SiC-Si, e) SLG/SiC-C, f) 4LG/SiC-C. Images tuned around 284.7 

eV, and acquired at 30°, rendering intense π* resonances. ROIs are 1 mm × 1 mm, and each pixel is ~ 40 
µm.  
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Figure 3. Extracted angle-resolved Carbon K-edge NEXAFS spectra. a) SLG/SiC-Si, b) 4LG/SiC-Si, c) 
SLG/SiC-C, d) 4LG/SiC-C, e) epitaxial graphene, f) Theoretical freestanding graphene. Resonances described 

in detail in the Supporting Information.  
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Figure 4. Theoretical angular-resolved NEXAFS calculation algorithm, and π* and σ* intensities plotted 
against cos2θ and sin2θ respectively for both theoretical and experimental graphene systems. a) Following 
geometry optimization to find the most energetically stable structure, the ground state is computed through 
standard DFT, whilst the excited state is computed through constrained DFT following the excited electron 
and core hole (XCH) approximation. NEXAFS spectra are calculated using Fermi’s Golden Rule. b) Spectra 

are then projected for various beam polar angles (θ); geometric definitions also show π* vector described by 
angles α and φ as used in the orbital vector approximation. c) Dichroic ratios of theoretical graphene, 

epitaxial graphene, SLG/SiC-Si, 4LG/SiC-Si and 4LG/SiC-C computed from 3 mm x 3 mm ROIs are -1, -

0.93, -0.94, -0.94, and -0.97, respectively. Full results presented in Table S1, Supporting Information. d) π* 
NEXAFS intensities fitted with Eq. 2. Fitting parameter αfrom 3 mm x 3 mm ROIs resulted in 0 for theoretical 

graphene, 11.8 for epitaxial graphene/SiC, 7.2 for SLG/SiC-Si, 7.9 for 4LG/SiC-Si, and 5.5 for 4LG/SiC-C. 
Full results are presented in Table S2, Supporting Information.  
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Figure 5. α maps constructed from results of orbital vector approximation. a) NEXAFS π* intensities, b) αs 
from 3 mm x 3 mm ROIs (zero-level data reduction), c) αs from ROIs 1-5 (first-level data reduction), d) 

mean αs and standard deviations from ROIs 1-5 (second-level data reduction). Intensity scale in a) is 0-1.9 
for epitaxial graphene/SiC, and 0-1.4 for the other three systems.  
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Figure 6. DBSCAN clustering based on π* intensity. Cluster maps indicate 4LG/SiC-C has the most pristine 
graphene. Maps also suggest two distinct length scales of out-of-plane deformations. Black squares indicate 

the location of 3 mm x 3 mm ROIs analyzed in the previous sections.  
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