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As the quest towards novel materials proceeds, improved characterization technologies are 

needed. In particular, the atomic thickness in graphene and other 2D materials renders some 

conventional technologies obsolete. Characterization technologies at wafer level are needed with 

enough sensitivity to detect strain in order to inform fabrication. In this work, NEXAFS 

spectroscopy was combined with simulations to predict lattice parameters of graphene grown on 

copper and further transferred to a variety of substrates. The strains associated with the predicted 

lattice parameters are in agreement with experimental findings. The approach presented here 

holds promise to effectively measure strain in graphene and other 2D systems at wafer levels to 

inform manufacturing environments. 

Introduction 

Augmenting needs in processing speed and memory storage amongst others pave the way to 

post-CMOS technologies, where materials discovery has long been identified as a limiting factor 

given the inability of current gate and dielectric materials to yield improved mobilities while 

maintaining a device switching ability.1 A remedial approach by the Materials Genome Initiative 

has identified graphene as a key material system suitable to be studied under a predictive 

materials science approach,2 i.e. Materials by Design, to effectively inform industry by closing 

up the theory/experiment/data paradigm.3  

Graphene - a 2D layer of single carbon atom thickness arranged in a honeycomb lattice-has 

attracted great interest owing to exceptional electrical properties at room temperature, as first 

reported in 2004.4 In this scheme, mobilities in graphene have been quoted as high as 40-70k 

cm2V-1s-1.1 Since then, novel concepts towards electronic and optoelectronic devices have been 

reported.5 Graphene obtained by graphite exfoliation has been successfully used for proof of 

concept device applications.4 However, grand challenges exist for industrial-scale fabrication of 
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3

large-area, defect-free graphene under controlled conditions and onto a desired substrate to 

produce electronic devices such as graphene- based field effect transistors (GFETs).6 Some of 

these challenges revolve around in plane and out of plane defects resulting from processing that 

induce random strain fluctuations, which have been identified as the dominant disorder source in 

graphene devices.7 

Indeed, strain and rippling effects, i.e. in and out of plane strain,7 both generated early on 

during growth prior to any processing, mostly as a result of thermal mismatch between metal 

substrates and graphene.8 In addition, graphene growth has been reviewed recently to emphasize 

the growth dynamics at the atomistic level on all metallic and SiC substrates, where a wealth of 

intrinsic defects –beyond strain- such as dislocations and vacancies readily nucleate from 

growth.9 Albeit, despite great success of graphene synthesis on Cu foils by CVD techniques10, 11 

in the last years to produce large area graphene at low cost, the quality of these films is typically 

beneath that of epitaxially-grown graphene on SiC.12 This is promoting research to devise 

efficient methods to enable graphene transfer with higher fidelity.13 Improved transfer 

approaches aim at minimizing structural defects, such as growth-derived mechanical strain and 

ripples (responsible for in and out of plane strain as mentioned above), as well as impurities, 

adsorbed atoms or molecules from transfer mechanisms, as well as transfer-derived mechanical 

effects.14, 15  

The deleterious interplay between morphology and electronic properties in graphene has been 

recently explored.16 Indeed, a detailed account of the electronic conductivity of graphene in 

scenarios whose degree of corrugation varied from wide (135 nm) to narrow (16nm) wrinkles 

with heights up to 6 nm was recently provided by Zhu et al.16 In particular, post processing 

promoted conventional ripples to standing, collapsed and folded wrinkle morphologies, all with 
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4

specific electronic transport attributes.  Albeit, some reports have highlighted the advantages of 

such corrugated graphene layers as they improve on charge storage enhancement, strain 

sensitivity, and chemical reactivity enhancement inclusive of band-gap opening.17 Clearly, these 

properties are the subject of current studies to be leveraged in suitable applications. Indeed, 

mechanical effects resulting from growth and processing have been the object of much attention 

recently; where ripples, wrinkles and crumples become newly defined morphologies resulting 

from intrinsic thermal fluctuation, thermal expansion and pre-stretched substrates whose 

dimensions range on the 0.1-10 nm, 100 nm-1 µm, and above 1 µm respectively.  

On the characterization end, a number of techniques have been employed to describe and 

quantify the extent of mechanical deformation in graphene, such as Transmission Electron 

Microscopy (TEM) and Scanning Tunnel Microscopy (STM) on the morphological end and Low 

Energy Electron Diffraction (LEED), Raman, and Synchrotron spectroscopies on the 

spectroscopic end.9 In particular, the value of Near Edge X-ray Absorption Fine Structure 

(NEXAFS) spectroscopy has been recently highlighted to study graphene.18 NEXAFS 

spectroscopy is a synchrotron technique, which consists on the excitation of a core electron to an 

unoccupied antibonding state.19 Information on molecular orientation and chemistry can be 

obtained.20-22 On those lines, corrugations and doping in CVD-grown graphene on Cu have been 

investigated effectively by theoretical and experimental NEXAFS analysis, as well as interface 

chemical bonding of single layer graphene (SLG) deposited on Cu, Ni and Co substrates. 23-25 

Earlier, some of the authors had successfully used experimental NEXAFS to widely explore 

rippling and interactions at interfaces of single and bilayer graphene growth on Cu by chemical 

vapor deposition (CVD) and transferred to SiO2 substrates.18 
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5

In this paper, we complement those initial studies through a hybrid theoretical/experimental 

approach, by analyzing strain effects on the lattice parameter resulting from growth and 

subsequent transfer to foreign substrates. In this scheme, with the aid of theoretical standards 

calculated through first principles, lattice constants of transferred graphene are predicted as well 

as average strains, by virtue of relationship between bond lengths and σ* shifts in NEXAFS 

spectroscopy. Indeed, early on Molecular Orbital calculations had showed that the σ* positions 

of atoms were dependent on bond lengths.26 In this scheme, a strained bond yields a shift to 

lower σ* energy positions that can be recorded for the differently processed samples. To this end, 

a total of six experimental samples and seven theoretical samples will be studied, as described in 

the methodology description in the experimental section. 

The approach presented here is an alternative to Raman techniques to measure strain effects. 

Like Raman,27, 28 the present approach is suitable to deployment in Cu derived graphene, given 

the low charge transfer between substrate and epilayer, as will be demonstrated. In advantage of 

Raman technologies, and owing to the advent of large area hyperspectral detectors,29, 30 this 

technique is applicable to large substrates at wafer scale, with micro-meter resolution. The 

combined experimental/theoretical approach featured in this study follows a Materials by Design 

paradigm, and aims at addressing a pending issue in the context of post-CMOS technologies, as 

has been described in policy-prompted communications. Lastly, this approach could be useful to 

other 2D contenders. Moreover, it can be deployed at wafer scale and hence, is prone to 

industrial-level assessment. 

 

 

Experimental section 
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6

Methodology 

Indeed, we have made use of ab initio calculations to produce free standing and Cu-conformed 

mathematical graphene standards with varying degrees of deformation. Along these lines, free-

standing graphene (SLG) samples of 2.42 Å, 2.47 Å and 2.51 Å lattice parameters were modeled 

to probe into the tensile/compressive deformation of the typically reported 2.46 Å CVD grown 

on Cu.31 Mathematical graphene samples will be compared to six experimental systems: CVD-

grown graphene on Cu (CVD SLG/Cu), epitaxially-grown graphene on SiC, as well as single and 

four monolayers graphene grown via CVD on Cu, and subsequently transferred to both silicon- 

and carbon-terminated SiC (SLG/SiC-Si, SLG/SiC-C, 4LG/SiC-Si, 4LG/SiC-C).  

Following similar arguments used in earlier publication of one of the authors from the the 

present work,32 this experimental design will establish a baseline in two realms; first with respect 

to the theoretical standard, and second with respect to the epitaxially grown graphene on SiC. 

Indeed, selection of this collection of substrates offers a quantitative window into further 

examining the effects of processing by comparing epitaxially grown graphene on SiC with CVD 

grown graphene that is later transferred onto SiC substrates. It is worth emphasizing that multiple 

layer graphene is an additional variable here, known to enhance conductivity,33 where a 

multiplicity of stacking geometries enables tailoring of band structures.34 In this scenario, 

initially nucleated deformation might propagate throughout the graphene stack or further relax 

depending on subsequent substrate interactions. 

Sample fabrication 

Graphene monolayers were grown on Copper foil by chemical vapor deposition (CVD) method 

in a tube furnace (OTF-1200x-STM, MTI Corp, CA) equipped with a scroll vacuum pump.10, 35 

The Cu substrate was purchased by Lester Metals llc, Avalon Lake, Ohio, with a 99.99% purity 
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7

to yield oxygen-free Cu foil with 0.0005% O content, consisting of multidomains of ~10 µm 

diameter sized grain boundaries.  X-ray diffraction (XRD) measurements of the Cu foil shows 

<200> is the preferred orientation of the polycrystalline grains, with a weaker <111> 

contribution, as shown in Figure S1 in the Supporting Information (SI).  

Whilst the Cu foil was heated up to 1000 °C, hydrogen gas was injected at 125 mTorr for 30 

min, followed by injection of methane gas at 1.25 Torr for a further 30 min; the furnace was then 

cooled down to room temperature while the flow of hydrogen and methane remained. In 

preparation for graphene transfer, SiC substrates were solvent-cleaned through 15-minute 

submersion steps trough an Acetone, Methanol and Isopropyl alcohol sequence. The cleaning 

and transfer procedures took place in a class 10000 cleanroom, with the cleaned substrates being 

used immediately.  

Transfer onto SiC substrates were achieved using a thermal release tape (Nitto Americas Inc., 

CA). The tape was placed over the graphene-coated Cu foil. A round metal bar was gently rolled 

over the thermal release tape to secure the adhesion. Oxygen plasma (35mW/cm2) was applied 

on the exposed graphene-side of the Cu foil for 5 min to remove extra graphene and expedite the 

following chemical Cu etching process. The ensemble was then etched in 100 mg/mL 

(NH4)2S2O8 solution for 2 hr, rinsed with deionized water, and dried with dry N2. Upon drying, 

the graphene/thermal tape ensemble was layered onto SiC, as seen on the Etch/Rinse step in 

Figure 1a. The SiC/graphene/thermal release tape ensemble was then heated at 125 °C to release 

single monolayer graphene onto the substrate. Toluene washing was applied to the transferred 

graphene to remove adhesive residues from the tape. This single layer graphene transfer process 

was sequentially applied four times to prepare four monolayers graphene onto both Si- and C-

terminated SiC substrates. Figure 1(a) summarizes the fabrication process described here. 
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8

 

Following the above procedure, graphene single monolayer/four monolayers were transferred 

onto both Si- and C-terminated SiC. Indeed, our previous work on quartz crystal microbalance 

(QCM) based quantitative measurements for 1 layer to 4-layer thermal released tape transferred 

CVD graphene confirms that the repetitive graphene transfer used in this work is a reliable 

process for single to multilayer graphene on a hard metal/quartz substrate. Kim showed that the 

linear fit of 89.1 ng/cm2 transferred-graphene was in close proximity to a theoretical single layer 

graphene aerial weight of 76.1 ng/cm2.36 

 Following the same procedure, graphene was also transferred to a SiN transmission electron 

microscopy grid towards examination by Helium Ion Microscopy. In addition, epitaxially-grown 

single graphene monolayer on Si-terminated SiC was also fabricated for comparison. 

Epitaxial graphene was grown on commercial nominally on-axis oriented 6H–SiC (0001) 

(SiCrystal AG, Germany). Prior to epitaxy, surface polishing damage was removed through 

etching in hydrogen for 15 min. at 1 bar and 1550 °C. Epitaxial growth was performed in a 

vertical cold-wall reactor with a double-walled, water-cooled quartz tube and a graphite 

susceptor in a slow flow of argon (purity 5.0). Heating and cooling rates were 2–3 °C per second. 

Typical annealing time was 15 min. 
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9

 

Figure 1. (a) Schematic showing fabrication, transferring and subsequent NEXAFS analysis of 1 

transferred graphene layer. (b) Growth-transfer process details of graphene onto silicon-

terminated SiC substrate. The process was later repeated 4 times to yield a 4-layer transferred 

ensemble. 
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Characterization 

Experimental Carbon K-edge NEXAFS spectra were acquired at Beamline U7A (NSLS-I 

BNL) equipped with a LARIAT I detector (NSLS, Synchrotron Research Inc.) at the National 

Synchrotron Light Source, Brookhaven National Laboratory at 85° incidence of X-rays relative 

to the plane of the sample in partial electron yield (PEY) mode, with energy resolutions of 0.1 or 

0.2 eV. The polarization is 85% in the horizontal direction. NEXAFS measurements were 

performed in partial electron yield (PEY) mode. Depth sensitivity in PEY NEXAFS is dependent 

on the kinetic energies of the collected electrons, but can be tuned in part by the application of 

a grid bias prior to the detector.37, 38 The grid acts as a high-pass filter, rejecting elastically-

scattered electrons with lower energies which are likely to have been emitted from deeper within 

the sample.  C K-edge measurements were performed with a grid bias of -225 V.  A lower limit 

for the depth sensitivity can be taken as the inelastic mean free path of the C KLL signal 

(EK=263 eV), which will comprise a significant portion of the detected signal with this grid bias; 

this is estimated to be 0.7 nm assuming a graphene density of 2.3 g/cm3.37 Spectra normalization 

was performed with the LDF software (Synchrotron Research Inc.) and the scanned areas were 5 

mm × 3 mm in size. 

The systems reported in this paper are CVD SLG grown on Copper, and CVD graphene (single 

layer and four layers) grown on Copper transferred to both Si- and C-terminated SiC. Epitaxially 

grown graphene on SiC was also measured for comparison. Figure 1 shows the process from 

fabrication to transferred graphene onto a target substrate. 

For Helium Ion Microscopy characterization, untreated CVD-grown graphene was transferred 

to a SiN grid and imaged in an ORION Plus He-IM Zeiss at 30kV and the assistance of a flood 

gun was not necessary to prevent surface charging. 
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Geometry relaxation and Band structure calculation 

Structural relaxations were carried out using plane-wave density functional theory (DFT) 

implemented in Quantum Espresso within the pseudopotential approximation.39, 40 We employed 

ultrasoft pseudopotentials, energy cutoffs of 30 Ry for plane wave basis set and 320 Ry for 

charge density, k-sampling grid in the Monkhorst-Pack scheme of 30×30×1 and vacuum of ~15 

Å along the Z-axis. Total energy and electronic self-consistency criteria were set to 10-6 Ry and 

10-8 Ry. Atomic forces at equilibrium position were converged below 0.01 eV/Å. All relaxations 

were modelled under the general-gradient approximation (GGA) with the Perdue-Burke-

Ernzerhof (PBE) exchange-correlation functional.41, 42 The workflow is shown in Figure 2(a). 

A single layer of graphene conformed onto copper substrate along the (111) surface orientation 

(SLG/Cu) and free-standing graphene (SLG) samples of 2.42 Å, 2.47 Å and 2.51 Å lattice 

parameters were modelled. SLG was simulated considering a unit cell of 2 C atoms whereas for 

SLG/Cu the unit cell contains 4 Cu atoms, one per each layer, and 2 C atoms for the SLG, as 

well as, considered the most stable configuration top-fcc. Lattice constants of Cu substrates has 

been adapted to graphene accordingly, as depicted in Figure 2(b).43, 44 Interface distance of 3.25 

Å, accurately calculated by Olsen et. al. under the random phase approximation (RPA) to 

consider interface chemical bonding and van der Waals interactions, has been taken for all 

SLG/Cu systems.24, 45 Ground state band structures were performed by sampling the Brillouin 

Zone with 200×200×1, where convergence of Fermi energy is achieved within the self-consistent 

field calculations of ± 0.01 eV. High symmetry k-points (M and K) were explicitly included.  
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12

Graphene ripple was relaxed under same criteria of SLG and SLG/Cu except that k-sampling 

grid in the Monkhorst-Pack scheme of 10×10×1 and equilibrium atomic force of 0.02 eV/Å were 

applied.  The supercell contains 200 C atoms. 

 

NEXAFS simulation 

To simulate NEXAFS, supercells assembled by 7 replications of unit cell along X and Y axis 

has been employed. This supercell’s size provides a suitable distance between absorbing atoms 

to avoid interaction between them due to the periodic boundary conditions. Such supercell size 

contains 98C atoms for each SLG and 294 atoms (98 C and 196 Cu atoms) for SLG/Cu. Ab-initio 

NEXAFS spectroscopy calculations at C K-edge were modelled in the framework of the excited 

electron and core-hole (XCH) approximation at 55° of incidence of  an X-ray beam to enhance 

π* and σ* resonances; which was implemented in the in-house code Shirley by one of the 

authors.46 In order to simulate the excitation of the carbon atom due to the X-ray, one electron 

from the 1s level of the carbon pseudopotential has been removed. One carbon atom from the 

supercell has been used to calculate the unoccupied states under the pseudopotential 

approximation that includes the core-hole interactions. XCH-NEXAFS uses the PBE form for 

the exchange–correlation potential within GGA approximation. A simplified scheme of the 

procedure to simulate NEXAFS is shown in Figure 2(a). A final alignment with experiment has 

been carried out through the electronic transition π* C=C  of 285 eV for every NEXAFS spectra 

simulated. 
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Figure 2. Schematics describing first-principles NEXAFS calculations of SLG and SLG/Cu, 

where (a) the procedure to calculate NEXAFS from first-principles details the calculation of 

chemical shift embedded in the Shirley code. This chemical shift is the result of variation of 

excited total energy of the system  respect to isolated excited atom  and ground 

total energy of the system respect to isolated atom at ground state , then it is set to 

the Fermi energy of the system. For instance, the chemical shift calculated for SLG/Cu of 2.51 Å 

with the Shirley code showed a value of -1.87615 eV (Chemical shift = [-13445.55631458 - (-

18.71081349)] – [-13437.59127593 - (-10.71888784)] * 13.6 eV - 2.24196267040978 eV = -

1.87615 eV)  (b) Most stable top-fcc atomic configuration of SLG/Cu represented by four atomic 

layers of Cu where the two carbon atoms (α and β) in SLG unit cell cover Cu atoms in layers A 

and C. 

Results and Discussion  
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Graphene films were etched from the Cu substrates and transferred to SiC wafers, as shown in 

Figure 1(a), to be analyzed through both experimental and theoretical NEXAFS spectroscopy. 

The substrates of choice were Si and C- terminated SiC so that the resulting single and multiple 

layer stacks on SiC could we compared to the experimental standard epitaxial SLG/SiC. Transfer 

engineering allows for multiple layer stacking, with the possibility of favoring device mobility so 

that 4LG/SiC samples on both terminations were assembled and also examined by NEXAFS 

spectroscopy. Indeed, multiple layer graphene is an additional variable here, known to enhance 

conductivity,33  where a multiplicity of stacking geometries enables tailoring of band structures, 

inclusive of band-gap opening.34 In this scenario, initially nucleated deformations might 

propagate throughout the graphene stack or further relax depending on subjacent substrate 

interactions. 

 

Page 14 of 40

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

15

 

Figure 3.  (a) Calculated C K-edge NEXAFS spectra of SLG. Position of σ* resonance is a 

function of graphene lattice parameter, or bond length. (b) Experimental C K-edge NEXAFS of 

epitaxially grown graphene on SiC and chemical vapor deposited graphene on copper result in 
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different carbon–carbon bond lengths, evidenced by different σ* resonance energy positions. 

Experimental C K-edge NEXAFS spectra of single-layer graphene and four graphene layers 

transferred onto Silicon-terminated (d) and Carbon-terminated (d) SiC substrate. 

As described in methodology, both theoretical (Figure 3(a)) and experimental spectra (Figure 

3(b-d)) of graphene are considered in this discussion. In particular, theoretical spectra of 

graphene with different lattice parameters (Figure 3(a)) will be used as a theoretical standard in 

this discussion. Similarly, spectra of epitaxial SLG/SiC and CVD/Cu (Figure 3b) will be 

considered an experimental standard. Spectral signatures from both standards will be compared 

against spectral signatures from processed (i.e. transferred) graphene and from SIC substrates in 

both Si and C terminations (Figure 3(c-d)). 

Presence of π* C=C intensities at 285 eV on SiC substrates (Figure 3(b-d)) show signs of 

contamination, resulting from exposure of SiC substrates to enviromnments outside cleanroom 

settings, prior to synchrotron experiments. Experimental spectra of transferred SLG in all scans 

in Figure 3(c-d) is dominated by π* C=C intensities at 285 eV, σ* C-H at 287 eV, π* C=O at  

288 eV and σ* C-C at 292 eV as expected.18 The different properties of graphene grown on Si 

and C terminations of SiC have been well documented,12 and these results suggest that the SiC 

termination also has an effect on NEXAFS spectra of transferred CVD-grown graphene. In 

particular, while the spectrum of SLG/SiC(Si) in Figure 3(c) is dominated by graphene, the 

distinctive sharp σ* resonance of graphene is not observed for SLG/SiC(C) in Figure 3(d). 

Instead, a broad σ* resonance is recorded, which is attributed to the convolution of σ* C-C and 

σ* Si-C signals from the substrate (Figure 3(d)). Indeed, measurements from SLG/SiC-C do not 

resemble typical graphene spectra (Figure 3(d)). These findings indicate that the spectra 

collected from SLG/SiC-C is dominated by the substrate. Along those lines, experimental and 
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theoretical spectra of SiC in both 3C and 6H polytypes have been examined by Pedio and 

coworkers and show comparable signals as those shown here,47 with higher texture in the 287, 

288 eV and 292 eV regions for 6H-SiC than for 3C-SiC, as shown in Figure 3). 

The spectrum from SLG/SiC-Si owes its clear predominance of the graphene signal to the Si 

atomic layer residing between carbon in the substrate and graphene,9 which suppresses Auger 

emissions from the substrate. Upon four monolayers transfer, the substrate termination produces 

little effect in NEXAFS spectra, other than increased intensities of oxygenated states. Decreased 

intensities at 287 eV in 4LG/SiC(Si) suggests that C-H impurities could be mostly in the 

substrate. Conversely, π* C=O signal ~ 288 eV has a decresased intensity in the substrate and 

increases with graphene in both terminations, suggesting carboxylic impurities are being 

generated on the graphitic structure througout chemical processing.48  
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Figure 4. He Ion Microscopy (He-IM) of CVD-grown graphene grown on Cu and later 

transferred to a SiN TEM grid. This technique conveniently emphasizes characteristic ripples of 

~50 nm width that are visible throughout the sample. 

From a morphological perspective, the extent of large out of plane mechanical deformations 

can be conveniently described through He Ion Microscopy (He-IM).49 He-IM images of CVD-

grown graphene on Cu transferred to a SiN TEM grid show extensive regions of high 

corrugation, even on the freestanding portions, with features up to 50 nm wide, combined with 

flat areas, as seen in Figure 4. The scan width in this micrograph is 15×15 µm2, whereas scanned 

regions at the NEXAFS scans were 5×3 mm2. He-IM imaging of soft matter systems is well 

known to reproduce topographic features with high fidelity, which indicates the observed 
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corrugation was not originated by electron beam heating.50 In addition, absence of coating layers 

to prevent charging also guarantee high fidelity of graphene rippling effects, which are the result 

from growth and transfer to any given substrate, albeit with varying widths and heights. Widths 

from tens to hundreds of nanometers as well as heights of up to 6 nm have been recorded by 

AFM upon transfer.16 In addition to the obvious out of plane features, in plane effects will also 

result from growth and processing, whose morphological description requires of high resolution 

TEM or STM approaches that will, nonetheless, only provide a description at a very local level.9  

With the purpose of solving this sensitivity/length scale conundrum, the present approach 

combines the experimental NEXAFS data above with theoretical spectra to analyze mechanical 

deformation through lattice parameter variation at wafer scales; paving the way to industrial 

application.  

On those lines, three theoretical standards were constructed with free standing graphene of 

lattice parameters reported in the literature 2.42 Å,23 and 2.47 Å,24 as well as 2.51 Å for 

completion. These structures were relaxed through first principle procedures, as highlighted in 

the methods section and briefly introduced in Figure 2(a) and the flow of the 

experimental/theoretical sequence is shown in Figure 1(b). It is worth highlighting that these 

calculations resemble earlier ones by some of the authors, now with a smaller 7×7 supercell for 

computational economy that did not produce undesirable edge effects on the spectra and showed 

consistent fingerprints.  

The resulting NEXAFS spectra through the excited core hole approximation yielded by the 

Shirley code, as described in the methods section, are shown in Figure 2(a) and constitute a set of 

theoretical standards against which experimental data will be compared. On a first level 

comparison, experimental NEXAFS of epitaxially grown SLG on Cu through CVD methods and 
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on SiC through Si sublimation (i.e. experimental standards reported here) have also been 

measured, as shown in Figure 3(a). Since substrate effects need to be addressed, calculations also 

were performed on graphene grown on Cu, (SLG/Cu); which will be discussed in the next 

section. These calculations feature the reportedly most stable top fcc configuration, as described 

in Figure 2(b),43, 44 and an interface distance dz of 3.25 Å,  as reported by Banerjee et al, to 

adequately describe the van der Waals interaction between Cu and SLG.24  

 

Both calculated (projected to 55°) and experimental (acquired at 85°) NEXAFS spectra of 

graphene standards feature typical 1s → π* C=C and 1s → σ* C-C electronic transitions at ~285 

and 291 eV respectively (Figure 3(a-b)).18, 23 In addition, experimental spectra show peaks 

between 287 and 288 eV attributed to σ* C-H and π* C=O impurity states, similar to those in 

Figure 3(c-d). At this time, a discussion is needed per the depth sensitivity of the reported 

signals.  As mentioned earlier, both experimental and theoretical spectra have confirmed surface 

termination-sensitivity in NEXAFS studies on SiC.47 In addition, polarization and detector bias 

variations have yielded descriptions of the graphene/susbtrate interactions.9 

The assignment of C-C σ* intensities and correlation with bond length has been a 

controversial topic of research in the NEXAFS literature pertaining to molecules where 

conjugation and localization effects have been thoroughly discussed by Piancastelli and 

Stohr.51,52 Historically, the bond length correlation model sought to establish an empirical 

relationship between bond lengths and the energy position as well as the lineshape of a σ* 

resonance. While the model works reasonably well for simple diatomic molecules, it is of limited 

utility in systems with more delocalized sigma bonding such as benzene. In recent work, the core 

excitonic nature of C-C σ* states in graphene have been confirmed,53 building upon Ågren’s 
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theoretical and Brühwiler’s experimental work, which has also confirmed the core excitonic 

character of the ~292 eV intensity associated to sp2 graphite.54, 55 Interestingly, density functional 

theory calculations suggest a clear empirical correlation between the peak position of σ* 

resonances and bond lengths of graphene, which likely derives from the relatively localized 

excitonic nature of the resonances. However, this assumes entirely uniform strain with retention 

of conjugation. While the limits of this correlation have not been explored, the calculated 

empirical correlation provides a valuable means of assessing substrate-induced strain effects.   

First, on the interpretation realm, we have calculated the effects of substrate charge transfer 

(Figure S2) and substrate screening to graphene NEXAFS spectra (Figure S3), to which σ* shifts 

can also be attributed. We have found both these effects to be small for Cu substrates. This 

discussion has been fully detailed in the SI and will be further developed in the next section. 

Second, on the computational realm, we have confirmed that in-plane strained graphene leads to 

a shift of the σ* resonances exclusively, Figure 3(a-b), and no hybridization with the π* C=C 

signals in the graphitic lattice is possible. Similarly, adjacent atoms in an out of plane 

deformation, i.e. along a ripple, will also present shifted σ* resonances (see upcoming section 

“Interpretation of σ* shifts as they correlate to strain and lattice parameter”); indicative of lattice 

parameter variation, since hybridization with adjacent π* C=C signals is not viable. The density 

functional theory calculations thus provide a practical measure of strain within the samples likely 

as a result of the highly excitonic nature of σ* resonances. 

 

Lattice parameter calculations 

Shifts in σ* energy positions are clearly observed in experimental spectra of epitaxial SLG/SiC 

and CVD SLG/Cu (Figure 3(a-b)). These scans produced σ* resonances at 291.8 and 291.3 eV 
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respectively, suggesting a smaller lattice parameter in CVD SLG/Cu than in SLG/SiC. Further, 

transferred SLG onto SiC substrates produced σ* energy positions shifted by different amounts 

at 291.8 eV for SLG/SiC(Si), and 291.9 eV for both 4LG/SiC(Si) and 4LG/SiC(C). Growth 

method, substrate, and processing differ in the experimental samples discussed here. However, 

for the calculated spectra the only variable is the bond length, yet spectra still produced σ* shifts 

with varying bond lengths. Hence, taking into account the discussion in the prior section, we are 

attributing differences in C–C bond lengths as reflected in experimental NEXAFS to effects from 

growth, substrate, and processing. Indeed, of the three substrate-related factors discussed in the 

prior section, substrate shielding effects can be bypassed by monitoring E(σ*) – E(π*) rather 

than absolute σ* energies in the prediction of bond lengths for Cu-derived systems, which 

follows. As a consequence, and given that charge transfer is below the experimental resolution, 

all σ* energy positions from Cu-derived graphene (both grown and transferred) in this discussion 

reflect lattice parameter exclusively. In this calculation, epitaxial SLG/SiC is also tentatively 

included. However, this system will be discussed further below, due to the undocumented effects 

of substrate shielding. 

In the time-independent density functional theory calculations, graphene with various lattice 

constants were used as theoretical standards to fit a linear relationship between σ* resonance 

energy   E(σ*) – E (π*) and bond length R of the form: 

   (1) 

In this approach, we have calculated theoretical standards (SLG and SLG/Cu) with lattice 

constants 2.42, 2.47, and 2.51 Å, which has the underlying assumption of uniform strain. A 

theoretical study of freestanding SLG, addressed band structure engineering by strain through 

first principles calculations,56 and found that the characteristic band structure from graphene was 
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lost for those values of lattice constants above 3.209 Å. These findings justify the choice of 

lattice parameters of theoretical SLG standards; whose band structures (both as free standing and 

as SLG/Cu) have the expected graphitic components. In fact, we have taken an experimental 

value from CVD SLG/Cu from the literature with lattice constant of 2.46 Å, which is close to the 

typically used reference of graphite, with lattice constant 2.461 Å.31, 56 

In order to follow the rationale above and measure exclusively σ* shifts irrespectively of 

substrate effects, E(σ*) – E(π*) as given in  Eq. (1) was used to predict the bond lengths of 

experimental samples as shown in Figure 5, and in agreement with  discussion in the prior 

section. Notably, we have plotted E(σ*) – E(π*) versus lattice parameters from the theoretical 

standards associated to SLG and to SLG/Cu, as seen in Figure 5, both linear fits showing a slight 

difference in fitting parameters, as highlighted in the caption. Indeed, as it was shown in Figure 

5, charge transfer effects had a subtle effect on σ* energy positions, whose associated shifts were 

on the order of 0.01 eV, much below the energy resolution limit in the present setup. For 

consistency, we have used the regression associated to SLG/Cu to predict the bond lengths of the 

experimental as-grown and of transferred samples, for which only the E(σ*) – E(π*) is known 

through experimental NEXAFS. 
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Figure 5. The carbon–carbon bond lengths (R) for the various graphene systems display the 

predicted linear correlation with the σ* resonance energy position, as discussed in the text. 

Linear fits with equation (1) from the text yielded the fitting parameters a = -17.5 and b = 31.6 

for freestanding graphene, and a= -17.6 and b= 31.6 for SLG/Cu. For both freestanding SLG and 

SLG/Cu, the correlation coefficients are close to unity, indicating a reasonable empirical 

description of the relationship between R and σ* resonance energy position. Data points 

represented by black and red circles have been theory-derived to yield a linear fit on which 

experimental σ* resonance energy positions are placed atop to deduce values of R. Green circles 

represent the deduced values of R.  The inset shows the same regression magnified in the 6.80-

6.95 eV and 1.3905-1.404 Å where data from transferred and epitaxial graphene lie. 
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Figure 5 shows the bond length predictions of CVD SLG/Cu and of epitaxially-grown 

SLG/SiC (Figure 3(b)). In fact, the predictions were derived from the regression tendered from 

the calculated SLG/Cu. The experimental error for predicted bond lengths is calculated as the 

energy resolution (0.05 and 0.1 eV for beamlines U12 and U7 respectively) divided by fitting 

parameter a in Equation 1. The inset in Figure 5 shows the bond length predictions for the 

transferred systems. 

The prior section established that charge transfer in graphene grown on SiC is small, and 

therefore not affecting σ* resonance energy positions. An additional clarification is needed here 

in the context of SiC, not as growth but as transfer substrate. In this scenario, it is worth 

highlighting that those SLG that have been transferred will likely engage in Van der Waals 

interaction with the subjacent SiC substrates. Since the transfer is conducted at temperatures 

much below those typical in growth; it is expected that those van der Waals interactions will be 

weak, therefore yielding no charge exchange or any other substrate artifact and hence, producing 

no spectral signature and justifying the predictions in SiC transferred systems.  

With all, values of bond lengths of CVD SLG/Cu, Epitaxial SLG/SiC and transferred SLG to 

SiC on both terminations were predicted through the regressions in Figure 5 and plotted in Table 

1 along with calculated strain values with respect to a CVD grown experimental standard found 

in the literature with lattice parameter 2.46 Å,31 which is a similar value to graphite, often used in 

the literature as a comparative standard in the calculation of strains. 

Strain was calculated with the following equation: 

Strain =   
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Where R is bond length and the bond legth used for reference (1.42 Å), which is indeed a value 

from the literature that was derived from Low Energy Electron Diffraction measurements on 

CVD-grown graphene on Cu substrate as reported by Avila. [1] 

In this study, we have used SiC as transferred substrates aimed at comparing the resulting 

ensembles with epitaxial SLG/SiC as well as SLG-Cu as experimental references.  It is clear 

from Figure 3(b) that the growth substrate influences the carbon–carbon bond length. We note 

that predicted C–C bond lengths of all experimental systems, shown in Table 1, are lower than 

the typically cited length of 1.42 Å by less than 2%.20 In fact, Gui et al estimated that under small 

strain (less than 2%) the Poisson ratios in the two directions take the same values, indicating that 

graphene is isotropic (deformation along X and Y axis take same values).56 Under even 

smaller strain (less than 1.5%), the Poisson ratios were constant (0.1732). According to this 

discussion, values in Table 1 (below 2%) suggest that transferred SLG are all under compressive 

isotropic strain, and the predicted values are within the available experimental findings in the 

literature. 

 

Table 1. Predicted carbon-carbon bond lengths for all studied graphene systems. R(A) 

correspond to values of bond length of the standards, which are free standing graphene and 

graphene on Cu. These are theoretical samples, and R(A) is the bond length value by design on 

free standing graphene and the value of bond length for Graphene on Cu at the interface distance 

reported by Olson. Predicted R(A) are values of bond lengths that have been estimated over 

experimental samples with the assistance of theoretical standards, where a correlation between 

bond length and Sigma emission energy was established. 
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System 
E(σ*)-E(π*)  

(eV) 
R (Å) 

Predicted 

R (Å) 
Strain (%) 

SLG (2.46 Å)* --- 1.42 --- --- 

SLG (2.42 Å)a 6.888 1.397 --- -1.62 

SLG (2.47 Å)a 6.430 1.426 --- 0.42 

SLG (2.51 Å)a 5.975 1.449 --- 2.04 

SLG/Cu (2.42 Å)b 6.906 1.397 --- -1.62 

SLG/Cu (2.47 Å)b 6.446 1.426 --- 0.42 

SLG/Cu (2.51 Å)b 5.985 1.449 --- 2.04 

     
CVD SLG/Cu 6.64± 0.05 --- 1.413 ± 0.003 -0.49 

T-SLG/SiC(Si) 6.8± 0.1 --- 1.403± 0.006 -1.17 

T-4SLG/SiC(Si) 6.9± 0.1 --- 1.398± 0.006 -1.57 

T-4SLG/SiC(C) 6.8± 0.1 --- 1.403± 0.006 -1.17 

Epitaxial SLG/SiC 6.9± 0.1 --- 1.398± 0.006 -1.57 

a Calculated NEXAFS spectra where the graphene lattice constant is given in parentheses. 

b Spectra used to fit Equation 1. 

* Ref (Avila, et. al.)31 

 

  

Table 1 indicates that Epitaxial SLG/SiC, for instance, has a strain of -1.57%; suggesting an 

overestimation, since it is commonly thought that the maximum strain possible would be on the 

order of 1%.9, 57 Albeit, we are using three theoretical graphene systems to calibrate a line 

through which we predict bond lengths of real systems which are far from pristine graphene, as 

shown in the HeIM image in Figure 4. This will be addressed further in the section below. 
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Interpretation of σσσσ* shifts as they correlate to strain and lattice parameter 

At this time, it is unclear how individual morphologies throughout the scanned regions are 

contributing to a strain variation. Indeed, the dynamics of how their spectroscopic signatures are 

combined to produce a certain σ* position which yields a certain amount of strain have not yet 

been discussed. Incidentally, it is worth highlighting that in unsupported graphene (equivalently, 

graphene that is not experimenting effects from subjacent substrates like the transferred 

systems), by assuming theoretical SLG (2.47 Å) as standard, we find SLG (2.42 Å) is 

compressed by little under 3%. Even under this large strain, graphene properties—both 

electronic and crystallographic—remain unchanged according to the band structure as shown in 

Figure S2 (b). 

It should also be noted that while the theoretical models are molecularly homogenous, where 

every bond is uniformly strained by the same amount. However, experimental spectra average 

through morphologies that include multiple local inhomogeneities such as localized strain and 

rippling, as seen in Figure 4. With the purpose of analyzing at the atomic level, a rippled 

morphology, showing strained bonds throughout, has been modeled. 

More specifically, in a rippled region, such as that described in Figure 6, we have calculated 

spectra associated to atoms along the ripple. In this scheme, the associated σ* resonances were 

also plotted (Figure 6 right) to reveal energy shifts in the σ* resonance associated with individual 

strained bond lengths. The single strain value predicted for an experimental system is the result 

of strain homogeneities throughout the scanned region. The variation of σ* energies for atoms 1 

and 10 has been highlighted; showing the sensitivity of this technique to capture variations at the 

atomic scale that will be further averaged. In fact, we have verified that the average spectra along 
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the rippled region provides a σ* energy position that is the resulting average of the individual 

shifts from each atom along the ripple. 

 

Figure 6. Theoretical NEXAFS calculations for atoms along a graphene ripple. Individual atoms 

produce σ* resonances at various energies, indicating different bond lengths. 

These results suggest that every morphology is going to contribute to the measured integrated 

σ*, allowing the identification of an unevenly deformed real system with a certain value of strain 

to an equivalent homogeneously strained system. Both would indeed yield the same integrated 

spectra. It is important to remember that σ* shifts register not only in plane strain, but out of 

plane strain as well. Albeit, high curvature in large corrugations might not be registered due to 

transition prohibition, or, geometrically, due to the orthogonality of beam polarization and vector 

associated with the σ* orbitals.19 However, most morphologies will be captured by this 

technique. 

It is important to emphasize that this technique provides a clear description of the value of 

averaged spectra over large areas. The large areas are inclusive of wafer size regions- where the 

molecular detail of individual atoms is preserved and averaged out with the collective. These 

NEXAFS-specific capabilities are further emphasized through the value brought forward by 

large area hyperspectral NEXAFS. Indeed, with a dynamic range between 40 µm to the tens of 
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mms, this analysis can be deployed in specific regions of interest as well as to the overall wafer; 

opening the possibility of thorough strain metrics. 

Given the interest on the increased transport properties resulting from stacked configurations 

upon multiple transfers,33 as mentioned previously, it is worth highlighting this methodology 

allows for the characterization both at wafer and micron levels (due to the advent of 

hyperspectral spectroscopy) of transferred graphene to substrates of technological relevance, 

beyond native substrates. 

Following transfer of a single layer to SiC(Si), the bond length of CVD SLG/Cu decreases to 

1.403 Å. On transfer of subsequent layers the bond length is further decreased. However, prior to 

providing an interpretation on the specifics behind transferred systems, a comparative discussion 

is needed on the experimental standards CVD SLG/Cu and epitaxial SLG/SiC. 

Bertran et al. demonstrated how fine control over experimental variables such as H2 flow could 

have a large impact over strain on CVD SLG/Cu.58 Indeed, by measuring Raman shifts of the 2D 

phonon mode compared to that of unstrained pristine graphene, compressive strain could be 

lowered from 0.2% to 0.026%. Further, by combining Raman spectroscopy with molecular 

dynamics simulations, He et al. confirmed an average compressive strain of 0.5% for CVD 

SLG/Cu, which is the resulting average of local C-C bond lengths being deformed in the 

amounts of 0.009-0.005 Å, which yield strains between 0.3% and 0.6%.59 These results suggest 

that the predicted strain in CVD SLG/Cu (-0.49%) in Table 1 falls within the expected range. 

Discussion of the experimental standard SLG/SiC is less straightforward. Indeed, growth of 

epitaxial graphene has been recently reviewed; biaxial strain first arises from epitaxial stress 

during graphene growth on a substrate, and is energetically costly.9 In fact, strain in excess 1% 

has been quoted as prohibitive, since it cannot even be achieved in the graphene–metal 

Page 30 of 40

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

31

systems. In the present scenario, strain predicted in SLG/SiC is compressive by 1.57%, which is 

not consistent with Tetlow’s parameters. In addition, engaging in the calculation of band 

structure and NEXAFS spectrum of epitaxial SLG/SiC is computationally expensive.  As 

mentioned earlier, Coletti et al have measured the Dirac point energy on a SLG/SiC ensemble to 

be on the order of 0.42 eV, comparable to that observed in SLG/Cu, which produced little impact 

on the σ* shift.60 These results led to the conclusion that charge transfer in SLG/SiC would not 

be prone to σ* energy shifting. However, in order to conclude that this particular methodology 

of σ* resonance shifts is applicable to SLG/SiC, the substrate effects on SLG/SiC need to be 

elucidated. Substrate effects had promoted a hard shift in Cu ensembles, and the effects in SiC 

systems had not been derived. In fact, the value of predicted strain in epitaxial SLG/SiC in Table 

1 being higher than 1% is unexpected, suggesting that SiC substrate effects might be more 

complex than a spectral hard shift. 

 Indeed, Ferralis reported evidence of structural strain in epitaxial graphene on 6H-SiC(0001), 

calculated compressive strain at room temperature of 0.8%, associated to long annealing times.57
 

The rendered films were under residual compressive strain at room temperature, which again 

results from a large difference in the thermal expansion coefficients of graphene and SiC. The 

residual strain has been reported to be tunable by varying the growth time, between the 

theoretical maximum of almost 0.8% and an empirical minimum value of 0.1%. Following this 

trend, Schuman et al, reported a compressive strain of 0.2%.61 

  Comparing these available data to value reported here of -1.57%, the prediction for epitaxial 

SLG/SiC is too high, suggesting the need to account for the specific SiC screening effects in the 

growth ensemble. To further test the applicability of the calibrated trend in Figure S3 in SI, strain 

predictions using equation 1 from NEXAFS Carbon K-edge spectra of epitaxially grown 
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graphene on SiC(Si) found in the literature yielded 0.46%,62 0.67%,63 and 1.07%.64 Further 

highlighting the importance of identifying substrate-specific screening effects, these predictions 

suggest tensile strain in graphene, in opposition to accepted lattice parameter dynamics of 

epitaxial graphene/SiC that render in reality a compressed epilayer. These results confirm that 

this methodology will not be applicable to epitaxial SLG/SiC, until impact of substrate effects 

are accounted for. In particular, substrate screening effects in this system need to be elucidated.  

It is worth highlighting that transferred systems do not engage in covalent bonding with the 

subjacent SiC substrate, and the van der Waals interactions will be weak. Therefore, substrate 

effects (charge transfer or substrate shielding) will not need to be taken into account here. 

Although the predicted values for the transferred systems are in excess of the 1% limit identified 

by Tetlow,9 these will be highly rippled systems, without substrate pinning effects, which justify 

the larger values, which are still below 2% compression, and therefore preserving the band 

structure typical of graphene, as shown in Figure S2 (b). In this scheme, Table 1 shows that 

transferred systems exhibit larger compressive strain than CVD SLG/Cu, and this increase could 

be increasing with subsequent transferred layers. Indeed, the initial -0.49% strain in CVD 

SLG/Cu augments to -1.17% for T-SLG/SiC(Si) and -1.57% for T- 4SLG/SiC(Si). The strained 

value for T-4SLG/SiC(C) is equal (-1.17%) to that of T-SLG/SiC(Si). In view of these results, 

transfer seems to augment the frequency and magnitude of rippling events, (as expected) which 

are subject to be monitored by the σ* shift method discussed here. These data also suggest that 

transfer of multiple epilayers could have an impact on the level of compressive stress generated, 

and the dependence on substrate termination is unclear at this time.  

 Finally, it was mentioned earlier that the microscopy-hyperspectral acquisition mode used 

here has the ability to characterize segmented regions in each system, applying the σ* shift 
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method to each one. This would yield not only a strain value for the smaller regions, but an 

indication of strain variations at wafer level. In this work, only integrated regions of 5×3 mm2 

were analyzed. However, this technology has the capacity to image regions as large as 20×20 

mm2 with a resolution under 10 µm. Hence, the advent of hyperspectral synchrotron 

spectroscopy paves the way to spatially resolved mechanical deformation at the micron level and 

wafer scale (which has not been explored here), maintaining molecular sensitivity, and hence, 

overcoming detectability limits. The procedure highlighted here, demonstrates the methodology 

needed to curate and process big data in hyperspectral high throughput files in an analytical 

fashion. Further developments will include the deployment of machine –learning algorithms at 

different length scales to fully exploit the information derived to inform on mechanical 

deformation upon growth and processing at industrial scales. In addition, for optimum results, 

the acquisition needs to be set at the highest energy resolution that the detector and/or 

spectrometer is capable of. In the present work, most scans have been acquired at 0.2 eV 

resolution, rather than the maximum 0.06 eV that would yield higher sensitivity in the predicted 

lattice parameters. For this implementation to come to full term, newly developed hyperspectral 

NEXAFS detectors need to become forefront technology, accessible in various beamlines. This 

availability will promote extensive use and exploitation of the technological advancements that 

this detector portrays. 

In essence, this work demonstrates that interfacial substrate interactions can induce measurable 

changes in the peak positions of NEXAFS resonances, calibrated with the aid of density 

functional theory calculations, providing a means of mapping strain across transferred graphene 

samples. In addition, the ability of the σ* shift method to reflect out of plane strain effects has 
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also been demonstrated. This finding is crucial to account for the ripple-derived strain effects 

that are known to develop throughout the whole wafer. 

 

Summary and Conclusions 

This work proposes a methodology to measure graphene strains at wafer levels using a robust 

correlation derived from density functional theory calculations and originating from the excitonic 

nature of σ* and π* resonances. This methodology is directly applicable to CVD-grown 

graphene on Cu systems as well as to those graphene films that are transferred to substrates with 

which the established van der Waals interactions are weak. The methodology is also applicable 

to SiC-derived graphene, although the specifics of substrate interactions need to be elucidated 

and accounted for. Similarly, this method is applicable to other transmission metal substrates, 

however, measurements of both charge transfer between graphene and substrate (known to be 

more prominent than in Cu), as well as substrate screening, are needed to isolate the σ* energy 

dependence on bond length and strain. The validity of the σ* energy shift correlation with strain 

rests in the excitonic character of this resonance, having a localized absorbing electron which 

leads to a core electron decay, being likely the reason for the observed calculations.  Importantly, 

this method holds promise in other 2D materials, probing the bond length directly by measuring 

a ubiquitous σ* signal, taking into account substrate/epilayer relations as described above. To 

this end, further work is required to analyze the correlation between functionalization and 

dimensional reduction. 
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