38 research outputs found

    Atmosperic microwave plasma treatment on oil-contaminated aluminum surface

    Get PDF
    An atmospheric microwave plasma was used to clean and activate oil-contaminated Al surfaces. Treatment was done on a large-area basis by moving the desired sample over an atmospheric pressure plasma torch. The cleaning effectiveness is supported by contact angle measurements, ATR-FTIR, SEM, XPS, and a water-break free test. In addition, the effect of processing parameters on the result of surface cleaning and activation was studied. An enhancement of surface hydrophilicity was observed as a result of increasing input microwave power and plasma exposure time. The effect of surface temperature on plasma treatment was investigated through comparing water contact angles of two methods of plasma treatment with identical exposure time, power, and gas composition. Moreover, spatially resolved ATR-FTIR spectrums from partially cleaned surfaces reveal the extent of oxidation across the plasma treated area.Strategic Environmental Research and Development Program (SERDP); project number: WP-2742Ope

    The Anti-Inflammatory Effects of a Yin Zhi Huang Soup in an Experimental Autoimmune Prostatitis Rat Model

    Get PDF
    The present study aimed to investigate the therapeutic effects of the Chinese herbal medicine Yin Zhi Huang soup (YZS) in an experimental autoimmune prostatitis (EAP) rat model. In total, 48 rats were randomly divided into the following four groups (n=12/group): saline group, pathological model group, Qianlietai group, and YZS group. We determined the average wet weight of the prostate tissue, the ratio of the wet weight of the prostate tissue to body weight, tumor necrosis factor-alpha (TNF-α) levels in the blood serum, the expression of inducible nitric oxide synthase (iNOS) in the rats’ prostate tissues, and the pathological changes in the prostate tissue using light microscopy. YZS reduced the rats’ prostate wet weight, the ratio of the prostate wet weight to body weight, and TNF-α levels in the blood serum and inhibited the expression of iNOS in the rats’ prostate tissues (P<0.05). Following YZS treatment, the pathological changes in the rats’ prostates were improved compared with those in the model group (P<0.05). Furthermore, YZS treatment reduced inflammatory changes in the prostate tissue. It also significantly suppressed proinflammatory cytokines, such as TNF-α, and chemokines, such as iNOS, in the rat model of EAP

    Quantitative Image Analysis of Fractal-like Thin Films of Organic Semiconductors

    No full text
    Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried out via image analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then employ this program in a case study of meniscus-guided coating of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C8-BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms

    Quantitative Image Analysis of Fractal-like Thin Films of Organic Semiconductors

    No full text
    Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried out via image analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then employ this program in a case study of meniscus-guided coating of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C<sub>8</sub>-BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C<sub>8</sub>-BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms

    Injury-Based Surrogate Resilience Measure: Assessing the Post-Crash Traffic Resilience of the Urban Roadway Tunnels

    No full text
    Crash injuries not only result in huge property damages, physical distress, and loss of lives, but arouse a reduction in roadway capacity and delay the recovery progress of traffic to normality. To assess the resilience of post-crash tunnel traffic, two novel concepts, i.e., surrogate resilience measure (SRM) and injury-based resilience (IR), were proposed in this study. As a special kind of semi-closed infrastructure, urban tunnels are more vulnerable to traffic crashes and injuries than regular roadways. To assess the IR of the post-crash roadway tunnel traffic system, an over-one-year accident dataset comprising 8621 crashes in urban roadway tunnels in Shanghai, China was utilized. A total of 34 variables from 11 factors were selected to establish the IR assessment indicator system. Methodologically, to tackle the skewness issue in the dataset, a binary skewed logit (Scobit) model was found to be superior to a conventional logistic model and subsequently adopted for further analysis. The estimated results showed that 15 variables were identified to be significant in assessing the IR of the roadway tunnels in Shanghai. Finally, the formula for calculating the IR levels of post-crash traffic systems in tunnels was given and would be a helpful tool to mitigate potential trends in crash-related resilience deterioration. The findings of this study have implications for bridging the gap between conventional traffic safety research and system resilience modeling

    Co-Aromatization of n-Butane and Methanol over PtSnK-Mo/ZSM-5 Zeolite Catalysts: The Promotion Effect of Ball-Milling

    No full text
    The ball-milling (BM) method benefits the stabilization and dispersion of metallic particles for the preparation of the PtSnK&ndash;Mo/ZSM-5 catalyst. Based on the TPR, H2-TPD, XPS, and CO-FTIR results, the Pt&ndash;SnOx and MoOx species were formed separately on the BM sample. During the aromatization of cofeeding the n-butane with methanol, the yield of the aromatics is 59 wt.% at a n-butane conversion of 86% at 475 &deg;C over the Pt Mo BM catalyst. The more weak acid sites also contribute to the aromatics formation with the less light alkanes formation. For the Pt Ga catalysts, the slow loss of activity suggests that the BM method can restrain the coke deposition on the Pt-SnOx species, because of a certain distance between the Pt&ndash;SnOx and GaOx species on the surface of ZSM-5

    A High‐Lift Micro‐Aerial‐Robot Powered by Low‐Voltage and Long‐Endurance Dielectric Elastomer Actuators

    No full text
    Dielectric elastomer actuators (DEAs) are a special class of artificial muscles that have been used to construct animal-like soft robotic systems. However, compared with state-of-the-art rigid actuators such as piezoelectric bimorphs and electromagnetic motors, most DEAs require higher driving voltages, and their power density and lifetime remain substantially lower. These limitations pose significant challenges for developing agile and powered autonomous soft robots. Here, a low-voltage, high-endurance, and power-dense DEA based on novel multiple-layering techniques and electrode-material optimization, is reported. When operated at 400 Hz, the 143 mg DEA generates forces of 0.36 N and displacements of 1.15 mm. This DEA is incorporated into an aerial robot to demonstrate high performance. The robot achieves a high lift-to-weight ratio of 3.7, a low hovering voltage of 500 V, and a long lifetime that exceeds 2 million actuation cycles. With 20 s of hovering time, and position and attitude error smaller than 2.5 cm and 2°, respectively, the robot demonstrates the longest and best-performing flight among existing sub-gram aerial robots. This important milestone demonstrates that soft robots can outperform their state-of-the-art rigid counterparts, and it provides an important step toward realizing power autonomy in soft robotic flights

    How Far Away Are Lithium-Sulfur Batteries From Commercialization?

    No full text
    With the increasing demand for green energy due to environmental issues, developing batteries with high energy density is of great importance. Li-S batteries, since their big breakthrough in 2009, have attracted much attention in both academia and industry. In academia, significant progress has been made in improving the specific capacity, rate capacity, and cycle performance using various novel strategies. However, the performance is hugely different when these strategies are extended to mass production, indicating a significant difference between academic research, and industrial production. In this brief review, we discussed the gap between the academic research and commercialization in detail based on literature reports and to our more than 10 years' experience on Li-S pouch cells, which including cathodes, anodes, separators, interlayers, electrolytes, and additives. The problems, which existing in pouch cells by using the materials and technologies developed by academic research using coin cells, was analyzed. We expected that this review could be helpful to both academic research and industrial commercialization of Li-S batteries. Keyword: Lithium-sulfur batteries; Commercialization; Academic research; Energy density; GapGuo jia zi ran ke xue ji jin wei yuan hui (China) (Grant 51602223)Qufu shi fan da xue (Grant 613710
    corecore