257 research outputs found

    Rethinking Benchmarks for Cross-modal Image-text Retrieval

    Full text link
    Image-text retrieval, as a fundamental and important branch of information retrieval, has attracted extensive research attentions. The main challenge of this task is cross-modal semantic understanding and matching. Some recent works focus more on fine-grained cross-modal semantic matching. With the prevalence of large scale multimodal pretraining models, several state-of-the-art models (e.g. X-VLM) have achieved near-perfect performance on widely-used image-text retrieval benchmarks, i.e. MSCOCO-Test-5K and Flickr30K-Test-1K. In this paper, we review the two common benchmarks and observe that they are insufficient to assess the true capability of models on fine-grained cross-modal semantic matching. The reason is that a large amount of images and texts in the benchmarks are coarse-grained. Based on the observation, we renovate the coarse-grained images and texts in the old benchmarks and establish the improved benchmarks called MSCOCO-FG and Flickr30K-FG. Specifically, on the image side, we enlarge the original image pool by adopting more similar images. On the text side, we propose a novel semi-automatic renovation approach to refine coarse-grained sentences into finer-grained ones with little human effort. Furthermore, we evaluate representative image-text retrieval models on our new benchmarks to demonstrate the effectiveness of our method. We also analyze the capability of models on fine-grained semantic comprehension through extensive experiments. The results show that even the state-of-the-art models have much room for improvement in fine-grained semantic understanding, especially in distinguishing attributes of close objects in images. Our code and improved benchmark datasets are publicly available at: https://github.com/cwj1412/MSCOCO-Flikcr30K_FG, which we hope will inspire further in-depth research on cross-modal retrieval.Comment: Accepted to SIGIR202

    Interleukin-18 enhances vascular calcification and osteogenic differentiation of vascular smooth muscle cells through TRPM7 channel activation

    Get PDF
    Objective—Vascular calcification (VC) is an important predictor of cardiovascular morbidity and mortality. Osteogenic differentiation of vascular smooth muscle cells (VSMCs) is a key mechanism of VC. Recent studies show that IL-18 (interleukin-18) favors VC while TRPM7 (transient receptor potential melastatin 7) channel upregulation inhibits VC. However, the relationship between IL-18 and TRPM7 is unclear. We questioned whether IL-18 enhances VC and osteogenic differentiation of VSMCs through TRPM7 channel activation. Approach and Results—Coronary artery calcification and serum IL-18 were measured in patients by computed tomographic scanning and enzyme-linked immunosorbent assay, respectively. Primary rat VSMCs calcification were induced by high inorganic phosphate and exposed to IL-18. VSMCs were also treated with TRPM7 antagonist 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA to block TRPM7 channel activity and expression. TRPM7 currents were recorded by patch-clamp. Human studies showed that serum IL-18 levels were positively associated with coronary artery calcium scores (r=0.91; P<0.001). In VSMCs, IL-18 significantly decreased expression of contractile markers α-smooth muscle actin, smooth muscle 22 α, and increased calcium deposition, alkaline phosphatase activity, and expression of osteogenic differentiation markers bone morphogenetic protein-2, Runx2, and osteocalcin (P<0.05). IL-18 increased TRPM7 expression through ERK1/2 signaling activation, and TRPM7 currents were augmented by IL-18 treatment. Inhibition of TRPM7 channel by 2-aminoethoxy-diphenylborate or TRPM7 small interfering RNA prevented IL-18–enhanced osteogenic differentiation and VSMCs calcification. Conclusions—These findings suggest that coronary artery calcification is associated with increased IL-18 levels. IL-18 enhances VSMCs osteogenic differentiation and subsequent VC induced by β-glycerophosphate via TRPM7 channel activation. Accordingly, IL-18 may contribute to VC in proinflammatory conditions

    What if keys are leaked? Towards practical and secure re-encryption in deduplication-based cloud storage

    Get PDF
    By only storing a unique copy of duplicate data possessed by different data owners, deduplication can significantly reduce storage cost, and hence is used broadly in public clouds. When combining with confidentiality, deduplication will become problematic as encryption performed by different data owners may differentiate identical data which may then become not deduplicable. The Message-Locked Encryption (MLE) is thus utilized to derive the same encryption key for the identical data, by which the encrypted data are still deduplicable after being encrypted by different data owners. As keys may be leaked over time, re-encrypting outsourced data is of paramount importance to ensure continuous confidentiality, which, however, has not been well addressed in the literature. In this paper, we design SEDER, a SEcure client-side Deduplication system enabling Efficient Re-encryption for cloud storage by (1) leveraging all-or-nothing transform (AONT), (2) designing a new delegated re-encryption (DRE), and (3) proposing a new proof of ownership scheme for encrypted cloud data (PoWC). Security analysis and experimental evaluation validate security and efficiency of SEDER, respectively

    Neuroprotective Effect of Sonic Hedgehog Mediated PI3K/AKT Pathway in Amyotrophic Lateral Sclerosis Model Mice

    Get PDF
    The Sonic Hedgehog (SHH) signaling pathway is related to the progression of various tumors and nervous system diseases. Still, its specific role in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), remains studied. This research investigates the role of SHH and PI3K/AKT signaling pathway proteins on ALS development in a SOD1-G93A transgenic mouse model. After injection of SHH and PI3K/AKT signaling pathway inhibitors or agonists in hSOD1-G93A (9 weeks of age) transgenic mice, we studied skeletal muscle pathology using immunohistochemical staining and Western blot methods. In addition, recorded data on rotation time, weight, and survival were analyzed for these mice. Our study showed that the expression of SHH, Gli-1 and p-AKT in ALS mice decreased with the progression of the disease. The expression of p-AKT changed together with Gli-1 while injecting PI3K/AKT signaling pathway inhibitor or agonist; SHH and Gli-1 protein expression remained unchanged; p-AKT protein expression significantly decreased while injecting PI3K/AKT signaling pathway inhibitor. These results indicate that SHH has a regulatory effect on PI3K/AKT signaling pathway. In behavioral experiments, we found that the survival time of hSOD1-G93A mice was prolonged by injection of SHH agonist while shortened by injection of SHH inhibitor. In conclusion, we confirmed that the SHH pathway played a neuroprotective role in ALS by mediating PI3K/AKT signaling pathway

    Exosome delivery to the testes for dmrt1 suppression: a powerful tool for sex-determining gene studies

    Get PDF
    Exosomes are endosome-derived extracellular vesicles about 100 nm in diameter. They are emerging as prom ising delivery platforms due to their advantages in biocompatibility and engineerability. However, research into and applications for engineered exosomes are still limited to a few areas of medicine in mammals. Here, we expanded the scope of their applications to sex-determining gene studies in early vertebrates. An integrated strategy for constructing the exosome-based delivery system was developed for efficient regulation of dmrt1, which is one of the most widely used sex-determining genes in metazoans. By combining classical methods in molecular biology and the latest technology in bioinformatics, isomiR-124a was identified as a dmrt1 inhibitor and was loaded into exosomes and a testis-targeting peptide was used to modify exosomal surface for efficient delivery. Results showed that isomiR-124a was efficiently delivered to the testes by engineered exosomes and revealed that dmrt1 played important roles in maintaining the regular structure and function of testis in juvenile fish. This is the first de novo development of an exosome-based delivery system applied in the study of sex determining gene, which indicates an attractive prospect for the future applications of engineered exosomes in exploring more extensive biological conundrums.info:eu-repo/semantics/publishedVersio

    Patch-level based vegetation change and environmental drivers in Tarim River drainage area of West China

    Get PDF
    Information on vegetation-related land cover change and the principle drivers is critical for environmental management and assessment of desertification processes in arid environments. In this study, we investigated patch-level based changes in vegetation and other major land cover types in lower Tarim River drainage area in Xinjiang, West China, and examined the impacts of environmental factors on those changes. Patterns of land cover change were analyzed for the time sequence of 1987-1999-2004 based on satellite-derived land classification maps, and their relationships with environmental factors were determined using Redundancy Analysis (RDA). Environmental variables used in the analysis included altitude, slope, aspect, patch shape index (fractal dimension), patch area, distance to water body, distance to settlements, and distance to main roads. We found that during the study period, 26% of the land experienced cover changes, much of which were the types from the natural riparian and upland vegetation to other land covers. The natural riparian and upland vegetation patches were transformed mostly to desert and some to farmlands, indicating expanding desertification processes of the region. A significant fraction of the natural riparian and upland vegetation experienced a phase of alkalinity before becoming desert, suggesting that drought is not the exclusive environmental driver of desertification in the study area. Overall, only a small proportion of the variance in vegetation-related land cover change is explainable by environmental variables included in this study, especially during 1987-1999, indicating that patch-level based vegetation change in this region is partly attributable to environmental perturbations. The apparent transformation from the natural riparian and upland vegetation to desert indicates an on-going process of desertification in the region

    Factors affecting perceived health benefits and use behaviors in urban green spaces during the COVID-19 pandemic in southern China megacities

    Get PDF
    Background: The COVID-19 pandemic has alienated people from urban green spaces (UGSs) that have various health outcomes for humans. However, little is known about the influential factors of perceived health benefits and use behaviors in UGSs during the COVID-19 pandemic. This study aims to explore the key factors that influence perceived health benefits and use behaviors in UGSs and to assess the mediating role of place attachment in relationships during the COVID-19 pandemic in Chinese megacities. Methods: We conducted an online questionnaire survey from December 2020 to March 2021 in Guangzhou and Shenzhen, China. Six multiple regression models were constructed to investigate the main factors by which UGSs influence citizens' perceived health benefits and use behaviors. Four mediation models were established using the structural equation modeling (SEM) method to explore the mediating effect of place attachment. Results: A total of 628 questionnaires were included in the analysis. The results revealed that some UGS components (green space access, maintenance, and soundscape) significantly affected perceived health benefits for citizens (physical, mental, and social health) during the COVID-19 pandemic. Conversely, use behaviors (frequency of visits, duration of visits, and activity intensity) were mainly affected by the sociodemographic context but less affected by UGS components. In addition, UGS components were found to significantly predict place attachment, which in turn influenced the perceived health benefits, frequency, and duration of visits. Conclusions: This study distinguished the key factors that affect perceived health benefits and use behaviors during the COVID-19 pandemic: green space access, maintenance, soundscape, and sociodemographic characteristics. Place attachment still needs to be considered when discussing how to encourage citizens to visit UGSs during the pandemic. These findings provide implications for policymakers and landscape planners regarding design and management measures for UGSs that are conducive to coping with pandemics
    • …
    corecore