635 research outputs found

    Interference Management for Over-the-Air Federated Learning in Multi-Cell Wireless Networks

    Full text link
    Federated learning (FL) over resource-constrained wireless networks has recently attracted much attention. However, most existing studies consider one FL task in single-cell wireless networks and ignore the impact of downlink/uplink inter-cell interference on the learning performance. In this paper, we investigate FL over a multi-cell wireless network, where each cell performs a different FL task and over-the-air computation (AirComp) is adopted to enable fast uplink gradient aggregation. We conduct convergence analysis of AirComp-assisted FL systems, taking into account the inter-cell interference in both the downlink and uplink model/gradient transmissions, which reveals that the distorted model/gradient exchanges induce a gap to hinder the convergence of FL. We characterize the Pareto boundary of the error-induced gap region to quantify the learning performance trade-off among different FL tasks, based on which we formulate an optimization problem to minimize the sum of error-induced gaps in all cells. To tackle the coupling between the downlink and uplink transmissions as well as the coupling among multiple cells, we propose a cooperative multi-cell FL optimization framework to achieve efficient interference management for downlink and uplink transmission design. Results demonstrate that our proposed algorithm achieves much better average learning performance over multiple cells than non-cooperative baseline schemes.Comment: This work has been accepted by IEEE Journal on Selected Areas in Communication

    Studies of Intrinsic Localized Modes in a Nonlinear Electric Lattice with Saturable Nonlinearity

    Get PDF
    13301甲第4141号博士(理学)金沢大学博士論文本文Ful

    Studies of Intrinsic Localized Modes in a Nonlinear Electric Lattice with Saturable Nonlinearity

    Get PDF
    13301甲第4141号博士(理学)金沢大学博士論文要旨Abstract

    The effect of rapid maxillary expansion on the upper airway’s aerodynamic characteristics

    Get PDF
    Background The effect of rapid maxillary expansion (RME) on the upper airway (UA) has been studied earlier but without a consistent conclusion. This study aims to evaluate the outcome of RME on the UA function in terms of aerodynamic characteristics by applying a computational fluid dynamics (CFD) simulation. Methods This retrospective cohort study consists of seventeen cases with two consecutive CBCT scans obtained before (T0) and after (T1) RME. Patients were divided into two groups with respect to patency of the nasopharyngeal airway as expressed in the adenoidal nasopharyngeal ratio (AN): group 1 was comprised of patients with an AN ratio < 0.6 and group 2 encompassing those with an AN ratio ≥ 0.6. CFD simulation at inspiration and expiration were performed based on the three-dimensional (3D) models of the UA segmented from the CBCT images. The aerodynamic characteristics in terms of pressure drop (ΔP), maximum midsagittal velocity (Vms), and maximum wall shear stress (Pws) were compared by paired t-test and Wilcoxon test according to the normality test at T0 and T1. Results The aerodynamic characteristics in UA revealed no statistically significant difference after RME. The maximum Vms (m/s) decreased from 2.79 to 2.28 at expiration after RME (P = 0.057). Conclusion The aerodynamic characteristics were not significantly changed after RME. Further CFD studies with more cases are warranted.publishedVersio

    Nonlinear system identification and control using state transition algorithm

    Full text link
    By transforming identification and control for nonlinear system into optimization problems, a novel optimization method named state transition algorithm (STA) is introduced to solve the problems. In the proposed STA, a solution to a optimization problem is considered as a state, and the updating of a solution equates to a state transition, which makes it easy to understand and convenient to implement. First, the STA is applied to identify the optimal parameters of the estimated system with previously known structure. With the accurate estimated model, an off-line PID controller is then designed optimally by using the STA as well. Experimental results have demonstrated the validity of the methodology, and comparisons to STA with other optimization algorithms have testified that STA is a promising alternative method for system identification and control due to its stronger search ability, faster convergence rate and more stable performance.Comment: 20 pages, 18 figure

    Comparison of left ventricular mechanical dyssynchrony parameters between exercise and adenosine triphosphate stress tests using gated single-photon emission computed tomography myocardial perfusion imaging

    Get PDF
    Background Left ventricular mechanical dyssynchrony (LVMD) can be induced after stress test. However, no studies have compared the influence of different stress-inducing methods on LVMD parameters. aims The aim of the study was to determine whether there is a difference between exercise and adenosine triphosphate (ATP) stress tests in terms of changes in LVMD parameters assessed using gated single-photon emission computed tomography myocardial perfusion imaging (GSPECT MPI). methods A total of 190 patients who underwent 99mTc-sestamibi GSPECT MPI were consecutively enrolled. Treadmill exercise and ATP stress tests were performed in 95 patients each. Normal myocardial perfusion was defined as the summed stress score (SSS) ≤3 and summed rest score (SRS) ≤3, myocardial ischemia as SSS \u3e3 and SRS ≤3, and myocardial infarction as SSS \u3e3 and SRS \u3e3. Parameters of LVMD, including phase standard deviation (PSD), phase bandwidth (PBW), skewness, and kurtosis were compared. Subtraction was made between values during stress and rest phases to acquire ∆PSD, ∆PBW, ∆skewness, and ∆kurtosis. results There were no differences in LVMD parameters between the exercise and ATP groups. The same results were obtained in the normal perfusion, ischemia, and infarction subgroups. Furthermore, no differences were observed in ∆PSD (median [interquartile range, IQR], 0.25 [-2.3 to 3.1] vs 0.42 (-1.7 to 3.1]; P = 0.73), ∆PBW (median [IQR], 1 [-7 to 11] vs 1 [-6 to 11]; P = 0.95), ∆skewness (mean [SD], -0.06 [0.63] vs 0 [0.81]; P= 0.53), and ∆kurtosis (median [IQR], -0.47 [-4.2 to 4.3] vs -0.42 [-4.8 to 5.2]; P= 0.73) between the exercise and ATP stress-inducing methods. conclusions There are no differences between the exercise and ATP stress tests in terms of changes in LVMD parameters. Thus, the 2 methods can be used alternatively
    corecore