23 research outputs found
Back to the Future: Student Time Period Analyses
This newsletter began with the Fall 2015 Honors English class. These students were challenged to initiate research over a topic they thought was interesting and show how it related to our campus, Stephen F. Austin State University. It is our hope that this cumulative research will help readers look at SFA a little differently
Radiation Therapy Combined With Checkpoint Blockade Immunotherapy for Metastatic Undifferentiated Pleomorphic Sarcoma of the Maxillary Sinus With a Complete Response
Background: Undifferentiated pleomorphic sarcoma (UPS) of the maxillary sinus is an extremely rare malignancy of the head and neck. Surgery is the mainstay of treatment for UPS; however, proximity to vital structures makes it challenging to achieve negative surgical margins. Adjuvant therapy including radiation therapy with or without chemotherapy is generally indicated. Despite advances in multimodality treatment, objective response rates to available therapies and prognosis of metastatic UPS remain dismal. Immunotherapy has become a fourth cornerstone of cancer therapy and checkpoint blockade immunotherapy is a standard of care for recurrent or metastatic cisplatin-refractory head and neck squamous cell carcinoma. Checkpoint blockade immunotherapy is being studied in metastatic sarcoma, including UPS, and while initial results are promising, objective response rates remain below 20%. However, adding radiation therapy to checkpoint blockade immunotherapy has been shown, in both preclinical and retrospective clinical studies, to have combinatorial effects on both local and metastatic disease. Thus, further investigation into the effects of radiation therapy combined with immunotherapy in head and neck sarcomas is warranted.Case Presentation: We present a case of metastatic, chemotherapy-refractory, UPS of the maxillary sinus in a 55-year-old male treated with checkpoint blockade immunotherapy combined with radiation, which resulted in a complete response.Conclusions: This is the first report to our knowledge of metastatic UPS treated with a combination of radiation and dual agent checkpoint blockade immunotherapy. Further investigation is warranted to study the effects of this combination in patients with metastatic UPS that fail to respond to currently available therapies
Protein Expression of the Microglial Marker Tmem119 Decreases in Association With Morphological Changes and Location in a Mouse Model of Traumatic Brain Injury
The activation of microglia and the infiltration of macrophages are hallmarks of neuroinflammation after acute brain injuries, including traumatic brain injury (TBI). The two myeloid populations share many features in the post-injury inflammatory response, thus, being antigenically indistinguishable. Recently Tmem119, a type I transmembrane protein specifically expressed by microglia under physiological conditions, was proposed as a tool to differentiate resident microglia from blood-borne macrophages, not expressing it. However, the validity of Tmem119 as a specific marker of resident microglia in the context of acute brain injury, where microglia are activated and macrophages are recruited, needs validation. Our purpose was to investigate Tmem119 expression and distribution in relation to the morphology of brain myeloid cells present in the injured area after TBI. Mice underwent sham surgery or TBI by controlled cortical impact (CCI). Brains from sham-operated, or TBI mice, were analyzed by in situ hybridization to identify the cells expressing Tmem119, and by Western blot and quantitative immunofluorescence to measure Tmem119 protein levels in the entire brain regions and single cells. The morphology of Iba1+ myeloid cells was analyzed at different times (4 and 7 days after TBI) and several distances from the contused edge in order to associate Tmem119 expression with morphological evolution of active microglia. In situ hybridization indicated an increased Tmem119 RNA along with increased microglial complement C1q activation in the contused area and surrounding regions. On the contrary, the biochemical evaluation showed a drop in Tmem119 protein levels in the same areas. The Tmem119 immunoreactivity decreased in Iba1+ myeloid cells found in the contused cortex at both time points, with the cells showing the hypertrophic ameboid morphology having no Tmem119 expression. The Tmem119 was present on ramifications of resident microglia and its presence was decreased as a consequence of microglial activation in cortical areas close to contusion. Based on the data, we conclude that the decrease of Tmem119 in reactive microglia may depend on the process of microglial activation, which involves the retracting of their branchings to acquire an ameboid shape. The Tmem119 immunoreactivity decreases in reactive microglia to similar levels than the blood-borne macrophages, thus, failing to discriminate the two myeloid populations after TBI.This work was supported by the ERA-NET NEURON, JTC 2016: LEAP, NEURON9-FP-044 from the following national funding institutions: Italian Ministry of Health (Ministero della Salute), Italy; Ministerio de Economía, Industria y Competitividad (PCIN-2017-035) Spain; 01EW1703, Bundesministerium für Bildung und Forschung (BMBF), Germany.Peer reviewe
Changes over time in characteristics, resource use and outcomes among ICU patients with COVID-19-A nationwide, observational study in Denmark
BACKGROUND: Characteristics and care of intensive care unit (ICU) patients with COVID‐19 may have changed during the pandemic, but longitudinal data assessing this are limited. We compared patients with COVID‐19 admitted to Danish ICUs in the first wave with those admitted later. METHODS: Among all Danish ICU patients with COVID‐19, we compared demographics, chronic comorbidities, use of organ support, length of stay and vital status of those admitted 10 March to 19 May 2020 (first wave) versus 20 May 2020 to 30 June 2021. We analysed risk factors for death by adjusted logistic regression analysis. RESULTS: Among all hospitalised patients with COVID‐19, a lower proportion was admitted to ICU after the first wave (13% vs. 8%). Among all 1374 ICU patients with COVID‐19, 326 were admitted during the first wave. There were no major differences in patient's characteristics or mortality between the two periods, but use of invasive mechanical ventilation (81% vs. 58% of patients), renal replacement therapy (26% vs. 13%) and ECMO (8% vs. 3%) and median length of stay in ICU (13 vs. 10 days) and in hospital (20 vs. 17 days) were all significantly lower after the first wave. Risk factors for death were higher age, larger burden of comorbidities (heart failure, pulmonary disease and kidney disease) and active cancer, but not admission during or after the first wave. CONCLUSIONS: After the first wave of COVID‐19 in Denmark, a lower proportion of hospitalised patients with COVID‐19 were admitted to ICU. Among ICU patients, use of organ support was lower and length of stay was reduced, but mortality rates remained at a relatively high level
Recommended from our members
Optimization of a Method To Quantify Soil Bacterial Abundance by Flow Cytometry.
Bacterial abundance is a fundamental metric for understanding the population dynamics of soil bacteria and their role in biogeochemical cycles. Despite its importance, methodological constraints hamper our ability to assess bacterial abundance in terrestrial environments. Here, we aimed to optimize the use of flow cytometry (FCM) to assay bacterial abundances in soil while providing a rigorous quantification of its limitations. Soil samples were spiked with Escherichia coli to evaluate the levels of recovery efficiency among three extraction approaches. The optimized method added a surfactant (a tetrasodium pyrophosphate [TSP] buffer) to 0.1 g of soil, applied an intermediate degree of agitation through shaking, and used a Nycodenz density gradient to separate the cells from background debris. This procedure resulted in a high (average, 89%) level of cell recovery. Recovery efficiencies did not differ significantly among sites across an elevation gradient but were positively correlated with percent carbon in the soil samples. Estimated abundances were also highly repeatable between technical replicates. The method was applied to samples from two field studies and, in both cases, was sensitive enough to detect treatment and site differences in bacterial abundances. We conclude that FCM offers a fast and sensitive method to assay soil bacterial abundance from relatively small amounts of soil. Further work is needed to assay differential biases of the method across a wider range of soil types.IMPORTANCE The ability to quantify bacterial abundance is important for understanding the contributions of microbial communities in soils, but such assays remain difficult and time-consuming. Flow cytometry offers a fast and direct way to count bacterial cells, but several concerns remain in applying the technique to soils. This study aimed to improve the efficiency of the method for soil while quantifying its limitations. We demonstrated that an optimized procedure was sensitive enough to capture differences in bacterial abundances among treatments and ecosystems in two field studies
Recommended from our members
Optimization of a Method To Quantify Soil Bacterial Abundance by Flow Cytometry.
Bacterial abundance is a fundamental metric for understanding the population dynamics of soil bacteria and their role in biogeochemical cycles. Despite its importance, methodological constraints hamper our ability to assess bacterial abundance in terrestrial environments. Here, we aimed to optimize the use of flow cytometry (FCM) to assay bacterial abundances in soil while providing a rigorous quantification of its limitations. Soil samples were spiked with Escherichia coli to evaluate the levels of recovery efficiency among three extraction approaches. The optimized method added a surfactant (a tetrasodium pyrophosphate [TSP] buffer) to 0.1 g of soil, applied an intermediate degree of agitation through shaking, and used a Nycodenz density gradient to separate the cells from background debris. This procedure resulted in a high (average, 89%) level of cell recovery. Recovery efficiencies did not differ significantly among sites across an elevation gradient but were positively correlated with percent carbon in the soil samples. Estimated abundances were also highly repeatable between technical replicates. The method was applied to samples from two field studies and, in both cases, was sensitive enough to detect treatment and site differences in bacterial abundances. We conclude that FCM offers a fast and sensitive method to assay soil bacterial abundance from relatively small amounts of soil. Further work is needed to assay differential biases of the method across a wider range of soil types.IMPORTANCE The ability to quantify bacterial abundance is important for understanding the contributions of microbial communities in soils, but such assays remain difficult and time-consuming. Flow cytometry offers a fast and direct way to count bacterial cells, but several concerns remain in applying the technique to soils. This study aimed to improve the efficiency of the method for soil while quantifying its limitations. We demonstrated that an optimized procedure was sensitive enough to capture differences in bacterial abundances among treatments and ecosystems in two field studies
The effect of soil inoculants on seed germination of native and invasive species
Successful re-introduction of native species through ecological restoration requires understanding the complex process of seed germination. Soil microbes play an important role in promoting native establishment, and are often added to restoration sites during seed sowing. We tested the role of soil and lab-grown bacterial inoculants on germination timing and percent germination for nineteen species of plants commonly found in coastal California. Each species exhibited a different response to inoculant treatments, but overall time-to-germination was longer and percent germination was lower with soil inoculant compared to control or other treatments. The invasive species in our study had the highest percent germination of all species and germinated faster than all native shrubs. Germination timing was negatively correlated with percent germination and with seed weight. Our results suggest that lab grown inoculant and chemical treatment are effective at increasing germination in some native species, while soil inoculant is not. Given differences in germination timing between native and invasive species, restoration practitioners could consider using herbicide to treat areas seeded with native shrubs immediately following germination of invasive species without harming most natives, although germination timing and herbicides need further study in relation to microbial effects on seed germination.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Identifying Mechanisms for Successful Ecological Restoration with Salvaged Topsoil in Coastal Sage Scrub Communities
Although aboveground metrics remain the standard, restoring functional ecosystems should promote both aboveground and belowground biotic communities. Restoration using salvaged soil—removal and translocation of topsoil from areas planned for development, with subsequent deposition at degraded sites—is an alternative to traditional methods. Salvaged soil contains both seed and spore banks, which may holistically augment restoration. Salvaged soil methods may reduce non-native germination by burying non-native seeds, increase native diversity by adding native seeds, or transfer soil microbiomes, including arbuscular mycorrhizal fungi (AMF), to recipient sites. We transferred soil to three degraded recipient sites and monitored soil microbes, using flow cytometry and molecular analyses, and characterized the plant community composition. Our findings suggest that salvaged soil at depths ≥5 cm reduced non-native grass cover and increased native plant density and species richness. Bacterial abundance at recipient sites were statistically equivalent to donor sites in abundance. Overall, topsoil additions affected AMF alpha diversity and community composition and increased rhizophilic AMF richness. Because salvaged soil restoration combines multiple soil components, including native plant and microbial propagules, it may promote both aboveground and belowground qualities of the donor site, when applying this method for restoring invaded and degraded ecosystems
Recommended from our members
Radiation Therapy Combined With Checkpoint Blockade Immunotherapy for Metastatic Undifferentiated Pleomorphic Sarcoma of the Maxillary Sinus With a Complete Response.
Background: Undifferentiated pleomorphic sarcoma (UPS) of the maxillary sinus is an extremely rare malignancy of the head and neck. Surgery is the mainstay of treatment for UPS; however, proximity to vital structures makes it challenging to achieve negative surgical margins. Adjuvant therapy including radiation therapy with or without chemotherapy is generally indicated. Despite advances in multimodality treatment, objective response rates to available therapies and prognosis of metastatic UPS remain dismal. Immunotherapy has become a fourth cornerstone of cancer therapy and checkpoint blockade immunotherapy is a standard of care for recurrent or metastatic cisplatin-refractory head and neck squamous cell carcinoma. Checkpoint blockade immunotherapy is being studied in metastatic sarcoma, including UPS, and while initial results are promising, objective response rates remain below 20%. However, adding radiation therapy to checkpoint blockade immunotherapy has been shown, in both preclinical and retrospective clinical studies, to have combinatorial effects on both local and metastatic disease. Thus, further investigation into the effects of radiation therapy combined with immunotherapy in head and neck sarcomas is warranted. Case Presentation: We present a case of metastatic, chemotherapy-refractory, UPS of the maxillary sinus in a 55-year-old male treated with checkpoint blockade immunotherapy combined with radiation, which resulted in a complete response. Conclusions: This is the first report to our knowledge of metastatic UPS treated with a combination of radiation and dual agent checkpoint blockade immunotherapy. Further investigation is warranted to study the effects of this combination in patients with metastatic UPS that fail to respond to currently available therapies