2,232 research outputs found
An Algorithmic Test for Diagonalizability of Finite-Dimensional PT-Invariant Systems
A non-Hermitean operator does not necessarily have a complete set of
eigenstates, contrary to a Hermitean one. An algorithm is presented which
allows one to decide whether the eigenstates of a given PT-invariant operator
on a finite-dimensional space are complete or not. In other words, the
algorithm checks whether a given PT-symmetric matrix is diagonalizable. The
procedure neither requires to calculate any single eigenvalue nor any numerical
approximation.Comment: 13 pages, 1 figur
A quantum search for zeros of polynomials
A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved
A Banking Union for Europe: Part of an Encompassing Long-term Governance Structure, No Short-term Fix
Integrability and level crossing manifolds in a quantum Hamiltonian system
We consider a two-spin model, represented classically by a nonlinear
autonomous Hamiltonian system with two degrees of freedom and a nontrivial
integrability condition, and quantum mechanically by a real symmetric
Hamiltonian matrix with blocks of dimensionalities K=l(l+1)/2, l=1,2,... In the
six-dimensional (6D) parameter space of this model, classical integrability is
satisfied on a 5D hypersurface, and level crossings occur on 4D manifolds that
are completely embedded in the integrability hypersurface except for some
lower-D sub-manifolds. Under mild assumptions, the classical integrability
condition can be reconstructed from a purely quantum mechanical study of level
degeneracies in finite-dimensional invariant blocks of the Hamiltonian matrix.
Our conclusions are based on rigorous results for K=3 and on numerical results
for K=6,10.Comment: 8 pages, 3 figure
Nachtrag: Mindestlohn, Mütterrente, Pkw-Maut: Geht die Koalitionsvereinbarung zu Lasten der Wirtschaft und der Steuerzahler?
Ergänzend zu den Beiträgen im ifo Schnelldienst Nr. 2/2014 äußern sich Christoph M. Schmidt, RWI und Sachverständigenrat und Benjamin Weigert, Sachverständigenrat, zu den Koalitionsvereinbarungen. Ihrer Ansicht nach vernachlässigt die Wirtschaftspolitik die Frage, wie die Herausforderungen der Zukunft gemeistert werden sollen
PT-symmetry and its spontaneous breakdown explained by anti-linearity
The impact of an anti-unitary symmetry on the spectrum of non-Hermitian operators is studied. Wigner's normal form of an anti-unitary operator accounts for the spectral properties of non-Hermitian, PE-symmetric Harniltonians. The occurrence of either single real or complex conjugate pairs of eigenvalues follows from this theory. The corresponding energy eigenstates span either one- or two-dimensional irreducible representations of the symmetry PE. In this framework, the concept of a spontaneously broken PE-symmetry is not needed
Chaos and quantum-nondemolition measurements
The problem of chaotic behavior in quantum mechanics is investigated against the background of the theory of quantum-nondemolition (QND) measurements. The analysis is based on two relevant features: The outcomes of a sequence of QND measurements are unambiguously predictable, and these measurements actually can be performed on one single system without perturbing its time evolution. Consequently, QND measurements represent an appropriate framework to analyze the conditions for the occurrence of ‘‘deterministic randomness’’ in quantum systems. The general arguments are illustrated by a discussion of a quantum system with a time evolution that possesses nonvanishing algorithmic complexity
Small denominators, frequency operators, and Lie transforms for nearly integrable quantum spin systems
Based on the previously proposed notions of action operators and of quantum integrability, frequency operators are introduced in a fully quantum-mechanical setting. They are conceptually useful because another formulation can be given to unitary perturbation theory. When worked out for quantum spin systems, this variant is found to be formally equivalent to canonical perturbation theory applied to nearly integrable systems consisting of classical spins. In particular, it becomes possible to locate the quantum-mechanical operator-valued equivalent of the frequency denominators that may cause divergence of the classical perturbation series. The results that are established here link the concept of quantum-mechanical integrability to a technical question, namely, the behavior of specific perturbation series
Affine Constellations Without Mutually Unbiased Counterparts
It has been conjectured that a complete set of mutually unbiased bases in a
space of dimension d exists if and only if there is an affine plane of order d.
We introduce affine constellations and compare their existence properties with
those of mutually unbiased constellations, mostly in dimension six. The
observed discrepancies make a deeper relation between the two existence
problems unlikely.Comment: 8 page
Reconstruction of the spin state
System of 1/2 spin particles is observed repeatedly using Stern-Gerlach
apparatuses with rotated orientations. Synthesis of such non-commuting
observables is analyzed using maximum likelihood estimation as an example of
quantum state reconstruction. Repeated incompatible observations represent a
new generalized measurement. This idealized scheme will serve for analysis of
future experiments in neutron and quantum optics.Comment: 4 pages, 1 figur
- …
