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Abstract

The impact of an anti-unitary symmetry on the spectrum of non-hermitean
operators is studied. Wigner’s normal form of an anti-unitary operator is shown
to account for the spectral properties of non-hermitean, P7-symmetric Hamil-
tonians. Both the occurrence of single real or complex conjugate pairs of eigen-
values follows from this theory. The corresponding energy eigenstates span
either one- or two-dimensional irreducible representations of the symmetry P7.
In this framework, the concept of a spontaneously broken P7-symmetry is not
needed.

Deep in their hearts, many quantum physicists will renounce hermiticity of operators
only reluctantly. However, non-hermitean Hamiltonians are applied successfully in
nuclear physics, biology and condensed matter, often modelling the interaction of a
quantum system with its environment in a phenomenological way. Since 1998, non-
hermitean Hamiltonians continue to attract interest from a conceptual point of view
[1]: surprisingly, the eigenvalues of a one-dimensional harmonic oscillator Hamiltonian
remain real when the complex potential V = i43 is added to it. Numerical, semiclassi-
cal, and analytic evidence [2] has been accumulated confirming that bound states with
real eigenvalues exist for the vast class of complex potentials satisfying V1(#) = V(—2).
In addition, pairs of complex conjugate eigenvalues occur systematically.

PT-symmetry has been put forward to explain the observed energy spectra. The
Hamiltonian operators H under scrutiny are invariant under the combined action of
parity P and time reversal T,

[H,PT]=0. (1)
They act on the fundamental observables according to
Pt TP (2)
p— —p, p——-p,
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and T anti-commutes with the imaginary unit,
Ti=vT=—T. (3)

Whenever a P7T-symmetric Hamiltonian has a real eigenvalue F, the associated eigen-
state |E) is found to be an eigenstate of the symmetry PT,

E=FE": H|E)=E|E), PT|E)=+E). (4)

Occasionally, PT|FE) = —|E) occurs [3] which is equivalent to (4) upon redefining the
phase of the state: PT(i|E)) = +(i|F)). There is no difference between symmetry
and anti-symmetry under P7T .

However, if the eigenvalue E is complex, the operator PT does not map the cor-
responding eigenstate of H to itself,

E#E: H|E)=E|E), PT|E)#ME), any ). (5)

This situation is described as a ‘spontaneous breakdown’ of P77 -symmetry. No mech-
anism has been identified which would explain this breaking of the symmetry.

The PT-symmetric square-well model provides a simple example for this behavior
[4]. It describes a particle moving between reflecting boundaries at @ = +1, in the
presence of a piecewise constant complex potential,

iz, <0,
v%@:{_m 0 ZER. (6)

Acceptable solutions of Schrodinger’s equation must satisfy both the boundary con-
ditions, ¥ (4+1) = 0, and continuity conditions at the origin. As long as the value of
the parameter Z is below a critical value, Z < Z§, the eigenvalues F, of the non-
hermitean Hamiltonian H = — 0z + Vz() are real, and each eigenstate |¢,,) satisfies
the relations (4), with eigenvalues F, and +1, respectively. Above the threshold,
Z > 7§, at least one pair of complex conjugate eigenvalues Fy and I develops. One
of the corresponding eigenstates has the form [4]

B K,sinh k(1 —2), x>0,
Yol2) = { K, sinh A*(1 + z), r <0, (7)

the complex parameters x, A, ,,, and K, being determined by the boundary and
continuity conditions. The state ¢o(x) is not invariant under PT, i.e. (5) holds.

The purpose of the present contribution is a group-theoretical analysis of P7T-
symmetry. The properties of PT-symmetric systems are explained in a natural way by
taking into account that P7T is not a unitary but an anti-unitary symmetry of a non-
hermitean operator. The argument proceeds in three steps. First, Wigner’s normal
form of anti-unitary operators is reviewed, i.e. their (irreducible) representations
are identified. Second, the properties of non-hermitean operators with anti-unitary
symmetry are derived. These results are then shown to account for the characteristic
features of PT-symmetric systems.



Wigner develops a normal form of anti-unitary operators A in [5]. Anti-unitarity
of A is defined by the relation

(Ax|Av) = (¥|y) (8)

and it implies anti-linearity,

A(aly) + BIx)) = a”Aly) + B~Aly) . (9)

which is equivalent to (3). The representation theory of A relies on the fact that the
square of an anti-unitary operator is unitary:

(AP |A%) = (Ay|Ax) = (x|¢) . (10)

Therefore, the operator A? has a complete, orthonormal set of eigenvectors |Q2) with
eigenvalues ) of modulus one,

AYQ)y =Q[0), 19| =1. (11)

It plays the role of a Casimir-type operator labelling different representations of A.
Wigner distinguishes three different types of representations corresponding to the
eigenvalues of A%: complex Q (#£ Q), @ = +1, or Q = —1, summarized in Table (1).

1. An eigenstate |Q) of A2 with eigenvalue € (£ €2%) is not invariant under A. In-
stead, the states |Q) and |Q*) = A|Q> constitute a ‘flipping pair’ with complex
‘flipping value’ w (and w*), where w? = €. They span a two-dimensional space
which is closed under the action of A. Therefore, it carries a two-dimensional
representation of A, denoted by I'y, which is irreducible: due to the anti-linearity
of A, no (non-zero) linear combination of the flipping states exist which is in-
variant under A.

2. Similarly, if A? has an eigenvalue ) = —1, then the operator A flips the states
|—)and |[—*) = A|—). The flipping value is ¢, and the associated two-dimensional
representation I'_ is not reducible.

3. Two different situations arise if there is an eigenstate |1) of A? with eigenvalue
+1. The state A|1> is either a multiple of itself or not. In the first case, the
space spanned by |1) is invariant under A and hence carries a one-dimensional
representation vy of A. When redefining the phase of the state appropriately,
one obtains an eigenstate |1) of A with eigenvalue +1. In the second case,
the two states |[+) = [1) and |+%) = A|1> provide a flipping pair with flipping
value w = +1, and hence a representation I';. This representation, however,
is reducible due to the reality of the flipping value: the linear combinations
I1,) = |[+) + [+%) and [1;) = i(]+) — |+7)) are both eigenstates of A with

eigenvalue +1.



Q=w? I  actionof A dim I

opwn Ao
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Table 1: Representations I' of the operator A

Consequently, a Hilbert space ‘H naturally decomposes into a direct product of invari-
ant subspaces, each invariant under the action of the anti-unitary operator A,

H =T M @I_ON- @ [ ON+ @~ 0+, (12)

the nonnegative integers N,, N1 and ny are related to the degeneracies of the eigen-
values Q (# Q%) and Q = +1 of the operator A2, The corresponding decomposition
of a vector ) € H is the closest analog of an expansion into the eigenstates of a
hermitean (or unitary) operator. Surprisingly, two-dimensional irreducible represen-
tations of A exist although there is only one generator, A. No ‘good quantum number’
exists which would label the states spanning these representations.

A (diagonalizable) non-hermitean Hamiltonian H with a discrete spectrum [6] and
its adjoint HT each have a complete set of eigenstates:

i) = Balwa), Hp™) = E"g"), (13)

with complex conjugate eigenvalues related by E* = E*. They form a bi-orthonormal
basis in ‘H, as they provide two resolutions of unity,

D18 (Wal = D0 (@] = 1 (14)
and satisfy orthogonality relations,

(m |9p") =07, (15)
Let the non-hermitean operator H have an anti-unitary symmetry A,

[, A]=0. (16)



Then the unitary operator A? commutes with ]:[, and 1t has eigenvalues () of modulus
one. Consequently, there are simultaneous eigenstates |n,{)) of H and A*:

Hn, Q) = E,|n,Q), A*n,Q) =Qn,Q), E,eC. (17)

For simplicity, the eigenvalues ) are assumed discrete and not degenerate. Wigner’s
normal form of anti-unitary operators suggests to consider three cases separately:

complex © (# Q%) and Q = +1.
) #£ Q* The state

In, ) = wAn, Q), =0, (18)

is a second eigenstate of A2, with eigenvalue Q. The states {|n, Q),|n, ")} provide
a flipping pair under the action of the operator A,

A|n,ﬂ> :w*|n7ﬂ*>7 A|n7Q*> :w|n,ﬂ>, (19)

carrying the representation I'.. No degeneracy of the eigenvalue F, is implied by
the anti-unitary A-symmetry of H. However, the non-hermitean Hamiltonian has a
second eigenstate |n, 2*) with eigenvalue E7,

Hn, Q%) = EX|n, ), (20)

as follows from multiplying the first equation of (17) with A and w.

) = —1 Formally, the results for the representation I'_ are obtained from the
previous case by setting w = i. Again, a pair of complex conjugate eigenvalues is
found, and the associated flipping pair spans a two-dimensional representation space.

) = 41 This case is conceptually different from the previous ones as two possibili-
ties arise. Consider the state |n,+), an eigenvector of both H and A? with eigenvalues
FE, and +1, respectively. It satisfies Egs. (17) with & — +. If, on the one hand,
applying A to In, +) results in €®|n,+), then the state |n,1) = e™/2|n,4) is an
eigenstate of A with eigenvalue +1,

Aln,1) = |n,1). (21)

This occurrence of the one-dimensional representation vy forces the associated eigen-
value I, of H to be real since

Enn,1) = HAn, 1) = AHn, 1) = EX|n,1). (22)

If, on the other hand, |n,+) = A|n, +) is not a multiple of |n,+), then these states
combine to form the representation 'y, the flipping value being +1. Further, the state
|n, +*) is an eigenstate of the Hamiltonian with eigenvalue £*. As the flipping number
is real, linear combinations of |n,+) and |n, +*) do exist which are eigenstates of A—
however, they are not eigenstates of H. Consequently, the anti-unitary symmetry of
the Hamiltonian makes itself felt (on a subspace with (P7)? = —I—j) by either a single
real eigenvalue or a pair of two complex conjugate eigenvalues.

If any of the two-dimensional representations I', or I'y occurs and the associated
eigenvalue happens to be real, the anti-unitary symmetry implies a twofold degeneracy



of the energy eigenvalue. Again, the symmetry provides no additional label, and
simultaneous eigenstates of H and A can be constructed for I'y only. These cases will
be denoted by I'? or T'4.

It will be shown now that the properties of PT-symmetric quantum systems are
consistent with the representation theory of non-hermitean Hamiltonians possessing
an anti-unitary symmetry. Upon identifying

A=PT, (23)

one needs to check the value of (P7)? when applied to eigenstates of the Hamiltonian
in order to decide which of the representations I'x, I'y, or vy, is realized. Various
explicit examples will be given now.

For parameters Z < Z§, the eigenvalues of the P7T-symmetric square-well are
real throughout, and the operators H and PT have common eigenstates. Thus, the
relations (4) correspond to a multiple occurrence of the representation vy, compatible
with (PT)? = +1.

For 7Z > Z§, the energy eigenstate v(z) = (x| Eo, +) in (7) satisfies (PT)?|Eo, +)
= +|Fo, +). Therefore, the states |Fo, +) and |Fy, +*) = PT|Eo, +) carry a represen-
tation I'y, and the presence of two complex energy eigenvalues, )y and Ej is justified.
Egs. (5) can be completed to read:

H|Eqo,4) = EolEo,+),  PT|Eo,+) = +|Fo,+7),

E E*: ~ %
7 H|Ey, 4+~ = E}|Eo, +7), PT|Eo,) = +|Eo, +) .

(24)
Consequently, PT-symmetry is not broken but at Z = Z§ the system switches between
the representations I'y and ~,, with a corresponding change of the energy spectrum.
The following examples are taken from a discrete family of non-hermitean opera-
tors [7],
]:[M:ﬁZ—(ﬁcosth—iM)z, (elR, (25)

M taking positive integer values. Each operator Hyy is invariant under the combined
action of PT where P is parity about the point @ = iw/2: © — iw/2 — z. Due to
the reflection about a point off the real axis, the operators P and 7 do not commute
as has been pointed out in [8]. However, this fact is not essential here since only the
anti-unitary character of the symmetry P7 is essential.

For M = 2, two complex conjugate eigenvalues I/, and F_ = E7 of H, exist, with
associated eigenstates

Yi(x) =V(x)coshae = (x|Fy,—), Y_(x)=VY(x)sinhe = (x|Fy, =), (26)

and a PT-invariant function W(x) = exp[(¢/2)( cosh 22]. These states are a flipping
pair with flipping value 1,

PTY(x) = —ib(2), PT () =ity (2), (27)

and the twofold application of PT gives (—1). Hence, the representation I'_ is realized.
Similarly, for M = 4, four eigenstates form two flipping pairs, i.e. two representations
I'_, each being associated with a pair of complex conjugate eigenvalues.



For M = 3, three different real eigenvalues of the Hamiltonian H; have been
obtained analytically if (* < 1/4. The corresponding eigenfunctions are given by

P(x) = W(x)sinh2z, i(r) = W(r)(Acosh2z £1iB), (28)

with real coefficients A and B. Under the action of PT, the state ¢(z) is mapped
to itself, while ¥4 (x) each acquire an additional minus sign. Therefore, the states
() = (x| E,+) and iy (x) = (x| Ey) are simultaneous eigenstates of H and PT with
eigenvalues +1. The part of Hilbert space spanned by these three states transforms
according to three copies of the representation v,. If ( = 1/2, the eigenvalues F.
turn degenerate, and the eigenstates given in (28) merge, i)y (x) = ip_(z) = ¢(x).
However, a second, independent PT -invariant solution of Schrodinger’s equation can

be found,
v) = q;(x)/xd cewn (29)
ole) = w2y

The solutions {¢, ¢} transform according to y4 @ v4 = I'}. So far, the representation
I'. has apparently not been realized in P7T-symmetric quantum systems—a possible
explanation is the constraint 72 = +1 for time reversal [9].

In summary, the representation theory of anti-unitary symmetries of non-hermite-
an ‘Hamiltonians’ has been developed on the basis of Wigner’s normal form of anti-
unitary operators. Typically, energy eigenvalues come in complex conjugate pairs, and
the associated eigenstates of the Hamiltonian span a two-dimensional space carrying
one of the two-dimensional representations 'y, or I't. Furthermore, a single real
eigenvalue may occur, related to a one-dimensional representation v,. In this case
a single A-invariant energy eigenstate state exists while there are no simultaneous
eigenstates of the Hamiltonian and the symmetry operator in the two-dimensional
A-invariant subspaces. Instead, flipping pairs of states can be identified. Generally,
the symmetry does not imply the existence of degenerate eigenvalues—only if the
Hamiltonian happens to have a real eigenvalue, a two-dimensional degenerate subspace
may exist occasionally. These results naturally explain the properties of eigenstates
and eigenvalues of PT-symmetric quantum systems. In particular, it is not necessary
to invoke the concept of a spontaneously broken PT-symmetry. Contrary to a unitary
or hermitean symmetry, the presence of an anti-unitary symmetry does not imply
the existence of a set of simultaneous eigenstates of H and PT—simply because an
anti-linear operator is not guaranteed to have a complete set of eigenstates. Finally,
the present approach provides a new perspective on the suggested modification of the
scalar product in Hilbert space [10] which will be presented elsewhere [11] in detail.
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