1,870 research outputs found

    A quantum search for zeros of polynomials

    Get PDF
    A quantum mechanical search procedure to determine the real zeros of a polynomial is introduced. It is based on the construction of a spin observable whose eigenvalues coincide with the zeros of the polynomial. Subsequent quantum mechanical measurements of the observable output directly the numerical values of the zeros. Performing the measurements is the only computational resource involved

    An Algorithmic Test for Diagonalizability of Finite-Dimensional PT-Invariant Systems

    Get PDF
    A non-Hermitean operator does not necessarily have a complete set of eigenstates, contrary to a Hermitean one. An algorithm is presented which allows one to decide whether the eigenstates of a given PT-invariant operator on a finite-dimensional space are complete or not. In other words, the algorithm checks whether a given PT-symmetric matrix is diagonalizable. The procedure neither requires to calculate any single eigenvalue nor any numerical approximation.Comment: 13 pages, 1 figur

    PT-symmetry and its spontaneous breakdown explained by anti-linearity

    Get PDF
    The impact of an anti-unitary symmetry on the spectrum of non-Hermitian operators is studied. Wigner's normal form of an anti-unitary operator accounts for the spectral properties of non-Hermitian, PE-symmetric Harniltonians. The occurrence of either single real or complex conjugate pairs of eigenvalues follows from this theory. The corresponding energy eigenstates span either one- or two-dimensional irreducible representations of the symmetry PE. In this framework, the concept of a spontaneously broken PE-symmetry is not needed

    Diabolical points in the magnetic spectrum of Fe_8 molecules

    Full text link
    The magnetic molecule Fe_8 has been predicted and observed to have a rich pattern of degeneracies in its spectrum as an external magnetic field is varied. These degeneracies have now been recognized to be diabolical points. This paper analyzes the diabolicity and all essential properties of this system using elementary perturbation theory. A variety of arguments is gievn to suggest that an earlier semiclassical result for a subset of these points may be exactly true for arbitrary spinComment: uses europhys.sty package; 3 embedded ps figure

    Coherent states and the reconstruction of pure spin states

    Get PDF
    Coherent states provide an appealing method to reconstruct efficiently the pure state of a quantum mechanical spin s. A Stern-Gerlach apparatus is used to measure (4s + 1) expectations of projection operators on appropriate coherent states in the unknown state. These measurements are compatible with a finite number of states which can be distinguished, in the generic case, by measuring one more probability. In addition, the present technique shows that the zeros of a Husimi distribution do have an operational meaning: they can be identified directly by measurements with a Stem-Gerlach apparatus. This result comes down to saying that it is possible to resolve experimentally structures in quantum phase space which are smaller than (h) over bar

    Quantum diagonalization of Hermitean matrices

    Get PDF
    To measure an observable of a quantum mechanical system leaves it in one of its eigenstates and the result of the measurement is one of its eigenvalues. This process is shown to be a computational resource: Hermitean (N Ă—N) matrices can be diagonalized, in principle, by performing appropriate quantum mechanical measurements. To do so, one considers the given matrix as an observable of a single spin with appropriate length s which can be measured using a generalized Stern-Gerlach apparatus. Then, each run provides one eigenvalue of the observable. As the underlying working principle is the `collapse of the wavefunction' associated with a measurement, the procedure is neither a digital nor an analogue calculation - it defines thus a new example of a quantum mechanical method of computation
    • …
    corecore