2,108 research outputs found
Reinforcement Learning vs. Gradient-Based Optimisation for Robust Energy Landscape Control of Spin-1/2 Quantum Networks
We explore the use of policy gradient methods in reinforcement learning for
quantum control via energy landscape shaping of XX-Heisenberg spin chains in a
model agnostic fashion. Their performance is compared to finding controllers
using gradient-based L-BFGS optimisation with restarts, with full access to an
analytical model. Hamiltonian noise and coarse-graining of fidelity
measurements are considered. Reinforcement learning is able to tackle
challenging, noisy quantum control problems where L-BFGS optimization
algorithms struggle to perform well. Robustness analysis under different levels
of Hamiltonian noise indicates that controllers found by reinforcement learning
appear to be less affected by noise than those found with L-BFGS.Comment: 7 pages, 7 figure
The Stellar Initial Mass Function in the Galactic Center
Massive stars define the upper limits of the star formation process, dominate
the energetics of their local environs, and significantly affect the chemical
evolution of galaxies. Their role in starburst galaxies and the early Universe
is likely to be important, but we still do not know the maximum mass that a
star can possess, i.e.``the upper mass cutoff.'' I will discuss results from a
program to measure the upper mass cutoff and IMF slope in the Galactic Center.
The results suggest that the IMF in the Galactic center may deviate
significantly from the Salpeter value, and that there may be an upper mass
cutoff to the initial mass function of 150 Msun.Comment: To be published in the IMF@50 conference proceeding
The aging male: investigation, treatment and monitoring of late-onset hypogonadism in males
Androgen deficiency in the aging male has become a topic of increasing interest and debate throughout the world. The demographics clearly demonstrate the increasing percentage of the population that is in the older age groups. The data also support the concept that testosterone falls progressively with age and that a significant percentage of men over the age of 60 years have serum testosterone levels that are below the lower limits of young adults (age 20-30 years) men. The principal questions raised by these observations are whether older hypogonadal men will benefit from testosterone treatment and what will be the risks associated with such intervention. The past decade has brought evidence of benefit of androgen treatment on multiple target organs of hypogonadal men and recent studies show short-term beneficial effects of testosterone in older men that are similar to those in younger men. Long-term data on the effects of testosterone treatment in the older population are limited and specific risk data on the prostate and cardiovascular systems are needed. Answers to key questions of functional benefits that may retard frailty of the elderly are not yet available. The recommendations described below were prepared for the International Society of Andrology (ISA) and the International Society for the Study of the Aging Male (ISSAM) following a panel discussion with active participation from the audience sponsored by the ISA on the topic at the 4th ISSAM Congress in Prague in February 2004.peer-reviewe
The scale-free character of the cluster mass function and the universality of the stellar IMF
Our recent determination of a Salpeter slope for the IMF in the field of 30
Doradus (Selman and Melnick 2005) appears to be in conflict with simple
probabilistic counting arguments advanced in the past to support observational
claims of a steeper IMF in the LMC field. In this paper we re-examine these
arguments and show by explicit construction that, contrary to these claims, the
field IMF is expected to be exactly the same as the stellar IMF of the clusters
out of which the field was presumably formed. We show that the current data on
the mass distribution of clusters themselves is in excellent agreement with our
model, and is consistent with a single spectrum {\it by number of stars} of the
type with beta between -1.8 and -2.2 down to the smallest clusters
without any preferred mass scale for cluster formation. We also use the random
sampling model to estimate the statistics of the maximal mass star in clusters,
and confirm the discrepancy with observations found by Weidner and Kroupa
(2006). We argue that rather than signaling the violation of the random
sampling model these observations reflect the gravitationally unstable nature
of systems with one very large mass star. We stress the importance of the
random sampling model as a \emph{null hypothesis} whose violation would signal
the presence of interesting physics.Comment: 9 pages emulateap
On the normalisation of the cosmic star formation history
Strong constraints on the cosmic star formation history (SFH) have recently
been established using ultraviolet and far-infrared measurements, refining the
results of numerous measurements over the past decade. Taken together, the most
recent and robust data indicate a compellingly consistent picture of the SFH
out to redshift z~6, with especially tight constraints for z<~1. We fit these
data with simple analytical forms, and derive conservative bands to indicate
possible variations from the best fits. Since the z<~1 SFH data are quite
precise, we investigate the sequence of assumptions and corrections that
together affect the SFH normalisation, to test their accuracy, both in this
redshift range and beyond. As lower limits on this normalisation, we consider
the evolution in stellar mass density, metal mass density, and supernova rate
density, finding it unlikely that the SFH normalisation is much lower than
indicated by our direct fit. Additionally, predictions from the SFH for
supernova type Ia rate densities tentatively suggests delay times of ~3 Gyr. As
a corresponding upper limit on the SFH normalisation, we consider the
Super-Kamiokande (SK) limit on the electron antineutrino flux from past
core-collapse supernovae, which applies primarily to z<~1. We find consistency
with the SFH only if the neutrino temperatures from SN events are relatively
modest. Constraints on the assumed initial mass function (IMF) also become
apparent. The traditional Salpeter IMF, assumed for convenience by many
authors, is known to be a poor representation at low stellar masses (<~ 1 solar
mass), and we show that recently favoured IMFs are also constrained. In
particular, somewhat shallow, or top-heavy, IMFs may be preferred, although
they cannot be too top-heavy. (Abridged)Comment: 15 pages, 8 figures, accepted for publication in ApJ, major revisions
following referee's comment
Universal Negative Poisson Ratio of Self Avoiding Fixed Connectivity Membranes
We determine the Poisson ratio of self-avoiding fixed-connectivity membranes,
modeled as impenetrable plaquettes, to be sigma=-0.37(6), in statistical
agreement with the Poisson ratio of phantom fixed-connectivity membranes
sigma=-0.32(4). Together with the equality of critical exponents, this result
implies a unique universality class for fixed-connectivity membranes. Our
findings thus establish that physical fixed-connectivity membranes provide a
wide class of auxetic (negative Poisson ratio) materials with significant
potential applications in materials science.Comment: 4 pages, 3 figures, LaTeX (revtex) Published version - title changed,
one figure improved and one reference change
The general gaugings of maximal d=9 supergravity
We use the embedding tensor method to construct the most general maximal
gauged/massive supergravity in d=9 dimensions and to determine its extended
field content. Only the 8 independent deformation parameters (embedding tensor
components, mass parameters etc.) identified by Bergshoeff \textit{et al.} (an
SL(2,R) triplet, two doublets and a singlet can be consistently introduced in
the theory, but their simultaneous use is subject to a number of quadratic
constraints. These constraints have to be kept and enforced because they cannot
be used to solve some deformation parameters in terms of the rest. The
deformation parameters are associated to the possible 8-forms of the theory,
and the constraints are associated to the 9-forms, all of them transforming in
the conjugate representations. We also give the field strengths and the gauge
and supersymmetry transformations for the electric fields in the most general
case. We compare these results with the predictions of the E11 approach,
finding that the latter predicts one additional doublet of 9-forms, analogously
to what happens in N=2, d=4,5,6 theories.Comment: Latex file, 43 pages, reference adde
- …