675 research outputs found

    The Sznajd Consensus Model with Continuous Opinions

    Full text link
    In the consensus model of Sznajd, opinions are integers and a randomly chosen pair of neighbouring agents with the same opinion forces all their neighbours to share that opinion. We propose a simple extension of the model to continuous opinions, based on the criterion of bounded confidence which is at the basis of other popular consensus models. Here the opinion s is a real number between 0 and 1, and a parameter \epsilon is introduced such that two agents are compatible if their opinions differ from each other by less than \epsilon. If two neighbouring agents are compatible, they take the mean s_m of their opinions and try to impose this value to their neighbours. We find that if all neighbours take the average opinion s_m the system reaches complete consensus for any value of the confidence bound \epsilon. We propose as well a weaker prescription for the dynamics and discuss the corresponding results.Comment: 11 pages, 4 figures. To appear in International Journal of Modern Physics

    The Krause-Hegselmann Consensus Model with Discrete Opinions

    Full text link
    The consensus model of Krause and Hegselmann can be naturally extended to the case in which opinions are integer instead of real numbers. Our algorithm is much faster than the original version and thus more suitable for applications. For the case of a society in which everybody can talk to everybody else, we find that the chance to reach consensus is much higher as compared to other models; if the number of possible opinions Q<=7, in fact, consensus is always reached, which might explain the stability of political coalitions with more than three or four parties. For Q>7 the number S of surviving opinions is approximately the same independently of the size N of the population, as long as Q<N. We considered as well the more realistic case of a society structured like a Barabasi-Albert network; here the consensus threshold depends on the outdegree of the nodes and we find a simple scaling law for S, as observed for the discretized Deffuant model.Comment: 12 pages, 6 figure

    Saber: window-based hybrid stream processing for heterogeneous architectures

    Get PDF
    Modern servers have become heterogeneous, often combining multicore CPUs with many-core GPGPUs. Such heterogeneous architectures have the potential to improve the performance of data-intensive stream processing applications, but they are not supported by current relational stream processing engines. For an engine to exploit a heterogeneous architecture, it must execute streaming SQL queries with sufficient data-parallelism to fully utilise all available heterogeneous processors, and decide how to use each in the most effective way. It must do this while respecting the semantics of streaming SQL queries, in particular with regard to window handling. We describe SABER, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. SABER executes windowbased streaming SQL queries in a data-parallel fashion using all available CPU and GPGPU cores. Instead of statically assigning query operators to heterogeneous processors, SABER employs a new adaptive heterogeneous lookahead scheduling strategy, which increases the share of queries executing on the processor that yields the highest performance. To hide data movement costs, SABER pipelines the transfer of stream data between different memory types and the CPU/GPGPU. Our experimental comparison against state-ofthe-art engines shows that SABER increases processing throughput while maintaining low latency for a wide range of streaming SQL queries with small and large windows sizes

    Process model comparison based on cophenetic distance

    Get PDF
    The automated comparison of process models has received increasing attention in the last decade, due to the growing existence of process models and repositories, and the consequent need to assess similarities between the underlying processes. Current techniques for process model comparison are either structural (based on graph edit distances), or behavioural (through activity profiles or the analysis of the execution semantics). Accordingly, there is a gap between the quality of the information provided by these two families, i.e., structural techniques may be fast but inaccurate, whilst behavioural are accurate but complex. In this paper we present a novel technique, that is based on a well-known technique to compare labeled trees through the notion of Cophenetic distance. The technique lays between the two families of methods for comparing a process model: it has an structural nature, but can provide accurate information on the differences/similarities of two process models. The experimental evaluation on various benchmarks sets are reported, that position the proposed technique as a valuable tool for process model comparison.Peer ReviewedPostprint (author's final draft

    Phase transitions in social impact models of opinion formation

    Full text link
    We study phase transitions in models of opinion formation which are based on the social impact theory. Two different models are discussed: (i) a cellular--automata based model of a finite group with a strong leader where persons can change their opinions but not their spatial positions, and (ii) a model with persons treated as active Brownian particles interacting via a communication field. In the first model, two stable phases are possible: a cluster around the leader, and a state of social unification. The transition into the second state occurs for a large leader strength and/or for a high level of social noise. In the second model, we find three stable phases, which correspond either to a ``paramagnetic'' phase (for high noise and strong diffusion), a ``ferromagnetic'' phase (for small nose and weak diffusion), or a phase with spatially separated ``domains'' (for intermediate conditions).Comment: 15 pages, 4 figures, submitted for publication in Physica

    Universality of the Threshold for Complete Consensus for the Opinion Dynamics of Deffuant et al

    Full text link
    In the compromise model of Deffuant et al., opinions are real numbers between 0 and 1 and two agents are compatible if the difference of their opinions is smaller than the confidence bound parameter \epsilon. The opinions of a randomly chosen pair of compatible agents get closer to each other. We provide strong numerical evidence that the threshold value of \epsilon above which all agents share the same opinion in the final configuration is 1/2, independently of the underlying social topology.Comment: 8 pages, 4 figures, to appear in Int. J. Mod. Phys. C 15, issue
    corecore