16 research outputs found

    511 keV line and diffuse gamma rays from moduli

    Full text link
    We obtain the spectrum of gamma ray emissions from the moduli whose decay into e+e−e^+ e^- accounts for the 511 keV line observed by SPI/INTERGRAL. The moduli emit gamma rays through internal bremsstrahlung, and also decay directly into two gammas via tree and/or one-loop diagrams. We show that the internal bremsstahlung constrains the mass of the moduli below ∼40\sim 40 MeV model-independently. On the other hand, the flux of two gammas directly decayed from the moduli through one loop diagrams will exceed the observed galactic diffuse gamma-ray background if the moduli mass exceeds ∼20\sim 20 MeV in the typical situation. Moreover, forthcoming analysis of SPI data in the range of 1-8 MeV may detect the line emisson with the energy half the moduli mass in the near future, which confirms the decaying moduli scenario.Comment: 6 pages, 5 figures, published versio

    Activation in the COMPTEL double-scattering gamma-ray telescope

    Get PDF
    Abstract-The COMPTEL gamma-ray telescope has been operating in low Earth orbit for six years, since the launch of the Compton Gamma-Ray Observatory in April 1991. Comparisons of data for different orbits and epochs show evidence of activation on time scales from minutes (27Mg, q,2=9.5 min) to years C2Na, q&.58 yr). The activation is correlated with both the orbital altitude and solar cosmic-ray modulation. Because it requires coincident measurements in two different detectors, COMPTEL is most susceptible to instrumental background events in which two or more photons are produced simultaneously

    COMPTEL 1.8 MeV all sky survey: The Cygnus region

    Get PDF
    We present an updated version of COMPTEL’s 1.809 MeV sky survey. Based on eight years of observations we compare results from different imaging techniques using background from adjacent energy bands. We confirm the previously reported characteristics of the galactic 1.809 MeV emission, specifically an extended galactic ridge emission, mainly concentrated towards the inner galaxy, a peculiar emission feature in the Cygnus region, and a low-intensity ridge extending towards Carina and Vela. Because this gamma ray line is due to the decay of radioactive 26Al, predominantly synthesized in massive stars, one anticipates flux enhancements aligned with regions of recent star formation. This is born out by the observations. In particular the Cygnus feature, first presented in 1996 based on three years of COMPTEL data, is confirmed. Based on the stellar population we distinguish three prominent areas in this region, for which we separately derive fluxes, and discuss interpretations

    A time dependent model for the activation of COMPTEL

    Get PDF
    The structure of the CGRO satellite is irradiated by cosmic rays and trapped particles fromradiation belts. These incident particles produce radioactive nuclei in nuclear reactions with the satellite structure. Most of the radiation dose can be attributed to the passages through the South Atlantic Anomaly. The incident particle flux on the COMPTEL instrument is estimated from the event rate of a plastic scintillation detector. This event rate is modeled with a Neural Network simulation. The increase of the event rate during SAA passages is taken as a measure for the amount of induced radioactivity. A Neural Network Model is used to derive the buildup ofradioactive nuclei in the instrument over the first five years of the mission. Measurements of the internal 22Na - and 24Na-activity are used to estimate the proton flux in the SAA. The result is consistent with earlier measurements and models

    The total cosmic diffuse gamma-ray spectrum from 9 to 30 MeV measured with COMPTEL

    Get PDF
    A preliminary COMPTEL Cosmic Diffuse Gamma-Ray (CDG) spectrum from 800 keV to 30 MeV was presented earlier at the 3rd Compton Symposium. The COMPTEL results represent the first significant detection of the CDG radiation in the 9 to 30 MeV range. Using high-latitude data from the first 5 years of the mission we have performed a new detailed measurement of the 9 to 30 MeV spectrum with finer energy binning. The new improved results are in good agreement with our previous estimates and are compatible with power-law extrapolations from higher energies. The measured 9–30 MeV spectra from the Virgo and South Galactic Pole observations are consistent with each other

    The Advanced Compton Telescope

    Get PDF
    The Advanced Compton Telescope (ACT), the next major step in gamma-ray astronomy, will probe the fires where chemical elements are formed by enabling high-resolution spectroscopy of nuclear emission from supernova explosions. During the past two years, our collaboration has been undertaking a NASA mission concept study for ACT. This study was designed to (1) transform the key scientific objectives into specific instrument requirements, (2) to identify the most promising technologies to meet those requirements, and (3) to design a viable mission concept for this instrument. We present the results of this study, including scientific goals and expected performance, mission design, and technology recommendations

    INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    Get PDF
    The center of our Galaxy is a known strong source of electron-positron 511 keV annihilation radiation. Thus far, however, there have been no reliable detection of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (International Gamma-Ray Astrophysics Laboratory mission, resolution, coded-apeture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution, and energy resolution. We resport results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic plan. No positive annihilation flux was detected outside of the central regin ( l \u3e 40°) of our Galaxy. In this paper we describe observation and data analysis method and give limits on the 511 keV flu

    Improved COMPTEL 10-30 MeV Event Selections for Point Sources from Inflight Data

    Get PDF
    . After several years in orbit the COMPTEL experiment aboard the COMPTON Gamma-RayObservatory has collected a substantial amount of data from the MeV sky. We have used the inflight event data collected from the Crab, which is the brightest point source at MeV energies, to optimize our event selections for point sources. For the COMPTEL 10-30 MeV range we have derived a set of improved parameter selections, which leads to a reduction of background events and - at the same time - increases the number of source events, resulting in an obvious improvement in the signal-to-background ratio for point sources. Due to a revised cut on the PSD parameter a background reduction of ¸23% occurs. A narrowing and shifting of the TOF window results in a further slight (¸2%) reduction of background, however, also in a slight increase (¸5%) of source events. The revised event cuts improve significances of `real' point sources in imaging analysis typically by ¸1oe. MOTIVATION The COMPTEL experiment [1] ..

    Comptel measurements of the omnidirectional high-energy neutron flux in near-earth orbit

    No full text
    On four occasions, twice in 1991 (near solar maximum) and twice in 1994 (near solar minimum), one COMPTEL D1 detector module was used as an omnidirectional detector to measure the high-energy (\u3e12.8 MeV) neutron flux near an altitude of 450 km. The Dl modules are cylindrical, with radius 13.8 cm and depth 8 cm, and are filled with liquid scintillator (NE213A). The combined flux measurements can be fit reasonably well by a product of the Mt. Washington neutron monitor rate, a linear function in the spacecraft geocenter zenith angle, and an exponential function of the vertical geomagnetic cutoff rigidity in which the coefficient of the rigidity is a linear function of the neutron monitor rate. When pointed at the nadir, the flux is consistent with that expected from the atmospheric neutron albedo alone. When pointed at the zenith the flux is reduced by a factor of about 0.54. Thus the production of secondary neutrons in the massive (16000 kg) Compton Gamma-Ray Observatory spacecraft is negligible. Rather, the mass of the spacecraft provides shielding from the earth albedo
    corecore