11 research outputs found

    ROME/REA : a gravitational microlensing search for exoplanets beyond the snow line on a global network of robotic telescopes

    Get PDF
    Funding: KH acknowledges support from STFC grant ST/R000824/1.Planet population synthesis models predict an abundance of planets with semimajor axes between 1 and 10 au, yet they lie at the edge of the detection limits of most planet finding techniques. Discovering these planets and studying their distribution is critical to understanding the physical processes that drive planet formation. ROME/REA is a gravitational microlensing project whose main science driver is to discover exoplanets in the cold outer regions of planetary systems. To achieve this, it uses a novel approach combining a multiband survey with reactive follow-up observations, exploiting the unique capabilities of the Las Cumbres Observatory global network of robotic telescopes combined with a Target and Observation Manager system. We present the main science objectives and a technical overview of the project, including initial results.PostprintPeer reviewe

    An efficient soft error protection scheme for MPSoC and FPGA-based verification

    No full text
    As transistor density continues to increase with the advent of nanotechnology, reliability issues raised by more frequently appeared soft errors are becoming critical tasks for future embedded multiprocessor systems design. State-of-the-art techniques for soft error protections targeting multiprocessor systems involve either high chip cost and area overhead or much performance degradation and energy consumption, and do not fulfill the increasing requirement of high performance and reliability. In this paper, we present a hardware-software collaborated approach to efficiently manage application execution and overcome reliability threats for Multiprocessor Systems-on-Chip (MPSoC). A hardware-based on-chip sensor network is built for soft error detection, and a software-based recovery mechanism is applied for soft error correction. This strategy only introduces trivial overhead on hardware design and much lower overhead on software control and execution, and hence performance degradation and energy consumption are greatly reduced. The hardware sensor design is verified via FPGA-based implementations, which proves the feasibility of the proposed approach. A SystemC-based cycle-accurate simulator is built to further verify the effectiveness of our technique by comparing with related techniques on several real-world applications

    Canthin-6-Ones: Potential Drugs for Chronic Inflammatory Diseases by Targeting Multiple Inflammatory Mediators

    No full text
    Chronic inflammatory disease (CID) is a category of medical conditions that causes recurrent inflammatory attacks in multiple tissues. The occurrence of CID is related to inappropriate immune responses to normal tissue substances and invading microbes due to many factors, such as defects in the immune system and imbalanced regulation of commensal microbes. Thus, effectively keeping the immune-associated cells and their products in check and inhibiting aberrant activation of the immune system is a key strategy for the management of CID. Canthin-6-ones are a subclass of β-carboline alkaloids isolated from a wide range of species. Several emerging studies based on in vitro and in vivo experiments reveal that canthin-6-ones may have potential therapeutic effects on many inflammatory diseases. However, no study has yet summarized the anti-inflammatory functions and the underlying mechanisms of this class of compounds. This review provides an overview of these studies, focusing on the disease entities and the inflammatory mediators that have been shown to be affected by canthin-6-ones. In particular, the major signaling pathways affected by canthin-6-ones, such as the NLR family pyrin domain containing 3 (NLRP3) inflammasome and the NF-κB signaling pathway, and their roles in several CIDs are discussed. Moreover, we discuss the limitations in studies of canthin-6-ones and provide possible solutions. In addition, a perspective that may suggest possible future research directions is provided. This work may be helpful for further mechanistic studies and possible therapeutic applications of canthin-6-ones in the treatment of CID

    Reduction kinetics of Wüstite scale on pure iron and steel sheets in Ar and H<sub>2</sub> gas mixture

    No full text
    A dense and closed Wüstite scale is formed on pure iron and Mn alloyed steel after oxidation in Ar + 33 vol pct CO2 + 17 vol pct CO gas mixture. Reducing the Wüstite scale in Ar + H2 gas mixture forms a dense and uniform iron layer on top of the remaining Wüstite scale, which separates the unreduced scale from the gas mixture. The reduction of Wüstite is controlled by the bulk diffusion of dissolved oxygen in the formed iron layer and follows parabolic growth rate law. The reduction kinetics of Wüstite formed on pure iron and on Mn alloyed steel are the same. The parabolic rate constant of Wüstite reduction obeys an Arrhenius relation with an activation energy of 104 kJ/mol if the formed iron layer is in the ferrite phase. However, at 1223 K (950 °C) the parabolic rate constant of Wüstite reduction drops due to the phase transformation of the iron layer from ferrite to austenite. The effect of oxygen partial pressure on the parabolic rate constant of Wüstite reduction is negligible when reducing in a gas mixture with a dew point below 283 K (10 °C). During oxidation of the Mn alloyed steel, Mn is dissolved in the Wüstite scale. Subsequently, during reduction of the Wüstite layer, Mn diffuses into the unreduced Wüstite. Ultimately, an oxide-free iron layer is obtained at the surface of the Mn alloyed steel, which is beneficial for coating application.(OLD) MSE-
    corecore