1,710 research outputs found

    Electrochemical control of quantum interference in anthraquinone-based molecular switches

    Get PDF
    Using first-principles calculations we analyze the electronic transport properties of a recently proposed anthraquinone based electrochemical switch. Robust conductance on/off ratios of several orders of magnitude are observed due to destructive quantum interference present in the anthraquinone, but absent in the hydroquinone molecular bridge. A simple explanation of the interference effect is achieved by transforming the frontier molecular orbitals into localized molecular orbitals thereby obtaining a minimal tight-binding model describing the transport in the relevant energy range in terms of hopping via the localized orbitals. The topology of the tight-binding model, which is dictated by the symmetries of the molecular orbitals, determines the amount of quantum interference.Comment: 6 pages, 6 figure

    The Yoneda algebra of a graded Ore extension

    Full text link
    Let A be a connected-graded algebra with trivial module k, and let B be a graded Ore extension of A. We relate the structure of the Yoneda algebra E(A) := Ext_A(k,k) to E(B). Cassidy and Shelton have shown that when A satisfies their K_2 property, B will also be K_2. We prove the converse of this result.Comment: 9 page

    Effects of Non-Uniform Heating on the Location and Magnitude of Critical Heat Flux in a Microchannel Heat Sink

    Get PDF
    Decreasing form factors and diminishing numbers of thermal interfaces and spreading layers in modern, compact electronic packages result in non-uniform heat generation profiles at the chip level being transmitted directly to the heat sinks. An improved understanding of the effects of non-uniform heating on the heat dissipation limits in microchannel heat sinks has become essential. An experimental investigation is conducted to measure the location and magnitude of critical heat flux (CHF) in a microchannel heat sink exposed to a range of non-uniform heating profiles. A 12.7 mm × 12.7 mm silicon microchannel heat sink with an embedded 5 × 5 array of individually controllable heaters is used in the experiments. The microchannels in the heat sink are 240 mm wide and 370 micrometers deep, and are separated by 110 mm wide fins. The dielectric fluid HFE-7100 is used as the coolant, with an average mass flux in the heat sink of approximately 800 kg/m2s. High-speed visualizations of the flow are recorded to capture the CHF phenomena observed. A central ‘hotspot’ spanning the entire length of the heat sink in the flow direction (formed by heating only the central 20 percent of the base area) produced both the largest wall excess temperature and the lowest CHF of all the heat flux distributions investigated, due to the flow maldistribution induced. A single transverse hotspot spanning the heat sink perpendicular to the flow direction resulted in different CHF values based on its streamwise location; CHF was largest when the hotspot was placed nearest the inlet and smallest when placed nearest the outlet. The visualizations revealed that CHF occurs when there is a sudden and unalleviated upstream expansion of vapor in one or more channels above the hotspot, causing the local wall temperature to rapidly increase. The proximity of the hotspot to the inlet manifold, which communicates between all channels and can relieve downstream vapor expansion, appears to determine the resiliency of the heat sink to conditions leading to CHF

    Local Measurement of Flow Boiling Heat Transfer in an Array of Non-Uniformly Heated Microchannels

    Get PDF
    As electronics packages become increasingly thinner and more compact due to size, weight, and performance demands, the use of large intermediate heat spreaders to mitigate heat generation non-uniformities are no longer a viable option. Instead, non-uniform heat flux profiles produced from chip-scale variations or from multiple discrete devices are experienced directly by the ultimate heat sink. In order to address these thermal packaging trends, a better understanding of the impacts of non-uniform heating on two-phase flow characteristics and thermal performance limits for microchannel heat sinks is needed. An experimental investigation is performed to explore flow boiling phenomena in a microchannel heat sink with hotspots, as well as non-uniform streamwise and transverse peak-heating conditions spanning across the entire heat sink area. The investigation is conducted using a silicon microchannel heat sink with a 5 x 5 array of individually controllable heaters attached to a 12.7 mm x 12.7 mm square base. The channels are 240 lm wide, 370 lm deep, and separated by 110 lm wide fins. The working fluid is the dielectric fluorinert liquid FC-77, flowing at a mass flux of approximately 890 kg/m2 s. High-speed visualizations of the flow are recorded to observe the local flow regimes. Despite the substrate beneath the microchannels being very thin (200 lm), significant lateral conduction occurs and must be accounted for in the calculation of the local heat flux imposed. For non-uniform heat input profiles, with peak heat fluxes along the streamwise and transverse directions, it is found that the local flow regimes, heat transfer coefficients, and wall temperatures deviate significantly from a uniformly heated case. These trends are assessed as a function of an increase in the relative magnitude of the nonuniformity between the peak and background heat fluxes

    Design of a Non-intrusive Electrical Impedance-Based Void Fraction Sensor for Microchannel Two-Phase Flows

    Get PDF
    .A non-intrusive electrical impedance-based sensor is developed for measurement of local void fraction in air-water adiabatic flow through rectangular microchannels. Measurement of the void fraction in microchannels is essential for the formulation of two-phase flow heat transfer and pressure drop correlations, and may enable real-time flow regime control and performance prediction in the thermal regulation of high-heat-flux devices. The impedance response of the sensor to a range of flow regimes is first investigated in a crosswise (transverse) configuration with two aligned electrodes flush-mounted on opposing microchannel walls. Numerical simulations performed on a multi-phase domain constructed from three-dimensional reconstruction of experimentally observed phase boundaries along with the corresponding experimental results serve to establish the relationship between void fraction and dimensionless impedance for this geometric configuration. A reduced-order analytical model developed based on an assumption of stratified gas-liquid flow allows ready extension of these calibration results to different working fluids of interest. An alternative streamwise sensor configuration is investigated with two electrodes flush-mounted along a single wall in the flow direction in view of its potentially simpler practical implementation in arrays of microchannels. It is shown that a correlation between time-averaged impedance and void fraction can be established for this alternative configuration as well

    Design of Multifunctional Lattice‐Frame Materials for Compact Heat Exchangers

    Get PDF
    Structured porous materials show great potential as extended surfaces in heat-exchange applications that also require design for load-bearing capability. In particular, lattice-frame materials (LFM) are known for their superior strength-to-weight ratio; this work presents a comprehensive experimental and numerical study of fluid flow and heat transfer in porous LFMs. Flow through a periodic unit cell of the material is simulated to characterize the forced-convection performance under hydraulically and thermally fully developed conditions. The performance of LFMs with a tetrahedral ligament configuration is characterized as a function of Reynolds number in the laminar regime (150 \u3c Re \u3c 1000) in terms of Nusselt number and friction factor; the effect of porosity is studied by changing the ligament diameter. Experiments are performed for a subset of porosities to validate the numerical approach. A method is demonstrated for utilizing the simulation results, which assume perfect surface efficiency, to predict the performance of LFMs with non-ideal surface efficiency, based on the conduction resistance of the ligaments. It is shown that the thermal behavior of the ligaments closely matches that of cylindrical fins in cross flow and that this analogy can be used to calculate the overall surface efficiency. The implications of the current results on the design of compact heat exchangers using LFMs is assessed using several conventional performance metrics. Our analysis illustrates the challenges in defining any one universal performance metric for compact heat exchanger design; an appropriate performance metric must be selected that accounts for the particular multifunctional performance characteristics of interest. LFMs are shown to provide the benefits of high-porosity and high surface area-to-volume ratio of materials such as metal foams, while also incurring lower pressure drops and displaying higher structural integrity. This makes them ideal for heat exchangers in aerospace and other applications demanding such multifunctional capabilities. The characterization provided in this study readily allows LFM designs for heat exchanger applications with combined heat-transfer and pressure-drop constraints

    Calibration and Uncertainty Analysis of a Fixed-Bed Adsorption Model for CO2 Separation

    Get PDF
    Fixed-bed adsorption is widely used in industrial gas separation and is the primary method for atmosphere revitalization in space. This paper analyzes the uncertainty of a one-dimensional, fixed-bed adsorption model due to uncertainty in several model inputs, namely, the linear-driving-force (LDF) mass transfer coefficient, axial dispersion, heat transfer coefficients, and adsorbent properties. The input parameter uncertainties are determined from a comprehensive survey of experimental data in the literature. The model is first calibrated against experimental data from intra-bed centerline concentration measurements to find the LDF coefficient. We then use this LDF coefficient to extract axial dispersion coefficients from mixed, downstream concentration measurements for both a small-diameter bed (dominated by wall-channeling) and a large-diameter bed (dominated by pellet-driven dispersion). The predicted effluent concentration and temperature profiles are most strongly affected by uncertainty in LDF coefficient, adsorbent density, and void fraction. The uncertainty analysis further reveals that ignoring the effect of wall-channeling on apparent axial dispersion can cause significant error in the predicted breakthrough times of small-diameter beds

    On the vanishing of negative K-groups

    Full text link
    Let k be an infinite perfect field of positive characteristic p and assume that strong resolution of singularities holds over k. We prove that, if X is a d-dimensional noetherian scheme whose underlying reduced scheme is essentially of finite type over the field k, then the negative K-group K_q(X) vanishes for every q < -d. This partially affirms a conjecture of Weibel.Comment: Math. Ann. (to appear

    Synchronization of coupled single-electron circuits based on nanoparticles and tunneling junctions

    Get PDF
    We explore theoretically the synchronization properties of a device composed of coupled single-electron circuits whose building blocks are nanoparticles interconnected with tunneling junctions. Elementary nanoscillators can be achieved by a single-electron tunneling cell where the relaxation oscillation is induced by the tunneling. We develop a model to describe the synchronization of the nanoscillators and present sample calculations to demonstrate that the idea is feasible and could readily find applications. Instead of considering a particular system, we analyze the general properties of the device making use of an ideal model that emphasizes the essential characteristics of the concept. We define an order parameter for the system as a whole and demonstrate phase synchronization for sufficiently high values of the coupling [email protected] [email protected] [email protected]
    corecore