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ABSTRACT 

As electronics packages become increasingly thinner and more compact due to size, weight, and 

performance demands, the use of large intermediate heat spreaders to mitigate heat generation non-

uniformities are no longer a viable option. Instead, non-uniform heat flux profiles produced from chip-

scale variations or from multiple discrete devices are experienced directly by the ultimate heat sink. In 

order to address these thermal packaging trends, a better understanding of the impacts of non-uniform 

heating on two-phase flow characteristics and thermal performance limits for microchannel heat sinks is 

needed. An experimental investigation is performed to explore flow boiling phenomena in a microchannel 

heat sink with hotspots, as well as non-uniform streamwise and transverse peak-heating conditions 

spanning across the entire heat sink area. The investigation is conducted using a silicon microchannel heat 

sink with a 5 × 5 array of individually controllable heaters attached to a 12.7 mm × 12.7 mm square base. 

The channels are 240 μm wide, 370 μm deep, and separated by 110 μm wide fins. The working fluid is 

the dielectric fluorinert liquid FC-77, flowing at a mass flux of approximately 890 kg/m
2
s. High-speed 

visualizations of the flow are recorded to observe the local flow regimes. Despite the substrate beneath 

the microchannels being very thin (200 μm), significant lateral conduction occurs and must be accounted 

for in the calculation of the local heat flux imposed. For non-uniform heat input profiles, with peak heat 

fluxes along the streamwise and transverse directions, it is found that the local flow regimes, heat transfer 

coefficients, and wall temperatures deviate significantly from a uniformly heated case. These trends are 

assessed as a function of an increase in the relative magnitude of the nonuniformity between the peak and 

background heat fluxes. 

 

Keywords: non-uniform heating, hot spot, microchannel heat sink, two-phase flow, boiling 

 

1. Introduction 

Many studies in the literature have investigated uniform base heating profiles applied to microchannel 

heat sinks, as reviewed, for example, in [1-3]. These studies experimentally measured the onset of 

nucleate boiling [4], pressure drop [5,6], and heat transfer coefficient [5,7,8], and also developed models 

to predict the critical heat flux (CHF) [9,10]. In addition, flow regime maps have been developed under a 

variety of operating conditions [11,12]. While these studies have provided a thorough understanding of 

microchannel flow boiling under ideal heating conditions, realistic applications may impose highly non-

uniform heat fluxes due to chip- and system-level variations [13]. In order to reliably predict the 

performance in actual applications, a better understanding of two-phase microchannel cooling under non-

uniform heating conditions is needed, especially in terms of deviations in heat transfer performance and 

flow behavior compared to uniform heating conditions. 
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A discretized theoretical model for assessment of non-uniform heating in microchannels was 

developed by Koo et al. [14] using correlations for flow boiling heat transfer and pressure drop. The 

model was used to explore optimal geometric designs, but was limited in its ability to assess lateral flow 

instabilities across channels and for CHF prediction. A numerical model developed by Sarangi et al. [15] 

predicted the pressure drop and thermal resistance of a uniformly heated microchannel, and location of 

boiling incipience. The model was extended to include non-uniform heating, which showed a large impact 

on the overall fluid dynamics and heat transfer of the system. Revellin and Thome [9] developed a one-

dimensional theoretical model to predict CHF in microchannels under uniform heating conditions, which 

was further modified by Revellin et al. [16] to incorporate non-uniform axial heat fluxes. 

Past experimental efforts have studied the effects of non-uniform microchannel heating on flow 

boiling instabilities [17], pressure drop, and maximum wall temperatures [18-20]. It was found that 

hotspots near the inlet created a large transverse temperature variation across the heat sink due to non-

uniform fluid distribution. Maldistribution was caused by a local increase in two-phase pressure drop due 

to boiling, which diverted single-phase liquid to other locations; this effect was most pronounced for a hot 

spot at the inlet. Transient non-uniform heating situations have also been investigated [19,21]. 

Prior experimental studies with non-uniform heating conditions have typically focused on single point 

hotspots. The effect of location and configuration of the hotspot as well as that of multiple hotspots on 

thermal performance has not been fully explored. In addition, a rigorous study of other heating profiles, 

especially superposed on a uniform background heat flux as would be realized in application, has not 

been reported. The present work studies both local hotspots and increasingly non-uniform peak-heating 

profiles across the heat sink, both in the flow direction and perpendicular to it, with respect to thermal 

performance and flow boiling phenomena. This work considers the effects of non-uniform heating on the 

local heat transfer coefficients, wall temperatures, heat fluxes, and boiling characteristics of a 

microchannel heat sink. Concentration of the heat input typically results in higher local heat transfer 

coefficients due to transition into the more efficient boiling regime at the expense of increased local wall 

temperatures. This work enables better assessment of existing heat transfer models for prediction of non-

uniform heating profiles. 

 

2. Experimental Methods 

2.1 Test Section 

The microchannel test section used in the current study was described in detail by Harirchian and 

Garimella [12]; it was modified for the purposes of the current study and is shown in Figure 1a. A 

transparent, polycarbonate manifold cover plate seals and routes the working fluid through a silicon 

microchannel heat sink with a base area of 12.7 mm × 12.7 mm. The total silicon thickness is 
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approximately 650 μm. The heat sink is mounted on a printed circuit board that is offset from an electrical 

quick-connect board with an insulating G10 glass-epoxy composite layer. An insulating 0.4 mm thick 

borosilicate glass sheet is sandwiched between the microchannel heat sink and cover plate to protect the 

polycarbonate (rated to a temperature of 115-130 °C), and forms the rigid top wall of the microchannels. 

The fluid enters the channels through an inlet header section with a flow length of 10 mm, width of 12.7 

mm, and a height equal to that of the heat sink plus borosilicate glass thickness. 

Parallel microchannels are cut into the top surface of the silicon chip using a dicing saw, and are 

shown in Figure 1b. A single heat sink with 35 microchannels was used for the current study (240 μm 

channel width, 370 μm channel depth, and 110 μm fin width). Each channel was cut with a number of 

passes, which created some waviness on the bottom surface. The average channel bottom roughness in the 

region of a single cut is 0.2 μm, and the overall average surface roughness of the bottom and sides of the 

channels are 0.82 μm and 0.1 μm, respectively. 

A 5 × 5 array of resistance heaters and temperature-sensing diodes is fabricated on the bottom side of 

the heat sink, as shown in Figure 1b. Since the individual heater resistances are nearly identical, a single 

voltage can be applied across multiple heaters in parallel to provide a uniform flux over a desired area. Up 

to two DC voltage power supplies are connected to provide the customized, non-uniform heat flux 

profiles applied to the underside of the microchannels investigated in the current study. The heat 

generated and local temperature at each element are calculated based on the calibrated heater/sensor 

resistance and the applied voltage. The relationship between the voltage and temperature of each sensor is 

calibrated in a convection oven. More details about the calibration procedure for each element can be 

found in [6]. 

 

2.2 Flow Loop 

The experimental flow loop used is the same as that described by Harirchian and Garimella [12], and 

a schematic diagram is shown in Figure 2. The dielectric fluid FC-77 is circulated through the flow loop 

using a Micropump 415A magnetically coupled gear pump. A preheater sets the fluid to the desired inlet 

temperature upstream of the test section. Downstream of the test section, a liquid-to-air heat exchanger 

cools the fluid back to room temperature before it enters the reservoir. A McMillan Flo-114 liquid flow 

meter, with a range of 20-200 mL/min, measures the liquid flow rate through the loop. T-type 

thermocouples are located upstream of the preheater, upstream and downstream of the test section, and 

downstream of the heat exchanger. A 2200 series Omega differential pressure transducer measures the 

pressure drop across the test section. 

High-speed visualization is performed with a Photron Fastcam Ultima APX high-speed digital video 

camera and a Nikon ED 200 mm lens. A Sunoptics Titan 300 xenon arc lamp is used for inline 
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illumination of the test chip for the visualizations. Images are extracted from high-speed videos captured 

at 6,000 frames per second with a shutter speed of 6 kHz. 

 

2.3 Test Procedure 

Before running a test, the liquid is degassed using an expandable reservoir and a vacuum pump. The 

degassing procedure and the design of the expandable reservoir are adapted from [22]. The test fluid, FC-

77, contains 41% air by volume, or 283 ppm, at ambient temperature and pressure. An expandable 

container with a locking mechanism allows expansion and contraction of the reservoir to control the 

system pressure. First, the reservoir is expanded to create a gas space at the top of the reservoir. A 

vacuum pump connected to the top of the reservoir lid is turned on for 5 minutes to remove air and the 

FC-77 vapor that has collected in the gas space. The reservoir is left expanded and at a vacuum pressure 

for one hour to allow air to diffuse from the liquid into the gas space. The process is repeated until the 

pressure in the reservoir remains constant with time, indicating that air is not actively dissolving out of 

the liquid in the reservoir. The fluid is cycled through the loop and the reservoir degassing process is 

repeated several times. To ensure the fluid is fully degassed, the system is set to atmospheric pressure, 

fluid is pumped through the loop, and the preheater is used to boil the fluid. The measured preheater fluid 

temperature at incipience is confirmed to be the saturation temperature of FC-77 (97 °C). 

Experiments are conducted at a single mass flux of 890 kg/m
2
s. Fluid is pumped through the loop at a 

constant flow rate and preheated to approximately 91 °C, which corresponds to a subcooling of 6 °C at 

the inlet to the heat sink. The flow rate and inlet temperature are maintained at constant values throughout 

the test. The expandable reservoir is used to set the system at atmospheric pressure prior to turning on the 

heater elements. During testing, the system pressure increases slightly due to the bulk temperature rise of 

the fluid; however, this increase is minor (12.4 kPa), and smaller than is practically correctable with the 

expandable reservoir system.  

 

2.4 Test Cases 

A variety of heating cases were investigated as summarized in Figure 3. The heat transfer coefficients, 

wall temperatures, fluid temperatures, and the locations of boiling via high-speed imaging are obtained 

for each case. 

The first cases (Figure 3) correspond to hotspots that span either the width or length of the 

microchannel heat sink in transverse and streamwise directions: singular central transverse (1a), central 

streamwise (1b), inlet transverse (1c), and two transverse hotspots (1d) at the inlet and outlet. The hotpot 

heater locations are turned on (shown in red) while the rest are powered off (shown in gray). For these 

hotspot heating cases, the heat supplied to the strips of active heaters is incremented from zero until the 
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maximum heat flux for the test is reached. The maximum heat flux limit is reached when the wall 

temperature reaches 140 °C, to prevent the solder bumps in the test chip from degrading. 

The second set of test cases consider a non-uniform heating condition where a peak heat input is 

imposed along the width and length of the microchannel in the transverse (2a) and streamwise (2b) 

directions. In these latter two non-uniform heating cases, the total power input to the chip remains 

constant, but the local power input distribution is adjusted to increase the disparity between the peak and 

background heat fluxes. The total constant power input in this second set of cases is the same as the 

maximum power input for the corresponding hotspot heating cases. 

 

3. Data Reduction 

The data reduction method is described in Harirchian and Garimella [6]. Key modifications to this 

process take into account the enhanced substrate spreading that occurs for non-uniform heating profiles. 

Pressure-dependent local fluid properties and saturation temperatures are accounted for in the data 

reduction procedure to account for variations along the flow length. 

The local heat transfer rate from the microchannels to the fluid,  ̇   , is calculated based on an energy 

balance for each heating element as 

  ̇        ̇        ̇         ̇         
(1) 

 

The energy generated by the heating elements is denoted as  ̇    and is calculated as  ̇     
   . The 

heat loss from each heating element is by natural convection to the ambient air, radiation to the 

surroundings, and conduction from the microchannel heat sink to the cover plate and circuit board. A 

relationship between the base temperature and heat loss is experimentally obtained via measuring the 

amount of heat input that can be sustained before the test section is charged with coolant. A complete 

description of the procedure used to obtain the heat loss for each sensor is found in [23]. The energy 

conducted laterally from one heating element to the next is denoted as  ̇    . When non-uniform heating 

profiles are imposed, there is significant lateral conduction of heat through the silicon heat sink. Heat 

conduction between elements is calculated as 

  ̇           
 

 
(   )

(                                 )

   
  

(2) 

where the total net conduction is dependent on the four neighboring elements to heater i,j. 

During single-phase flow, the bulk fluid temperature above each heating element is calculated as 

           
∑  ̇       

        
  (3) 
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where ∑  ̇        is the sum of the net heat transfer to the fluid from the inlet to the heating element in 

question. The fluid temperature rise is based on the available sensible heat up until the saturation 

temperature is reached, at which point the fluid temperature is set equal to the saturation temperature. 

The local wall temperature is corrected from the measured diode temperature by accounting for 

conduction from the substrate to the base of the microchannel, calculated as 

             
     
 (   )

   
  

(4) 

The heat flux through the base is calculated from the local net heat transfer rate as 

      
  

 ̇      

     
  (5) 

The local heat transfer coefficient for each heating element, which represents an average along the 

channel height at a particular point along the flow length, is calculated considering the microchannel 

walls as extended fins, according to 

     
     
 

  (          )
  (6) 

where   
  is the wall heat flux calculated using the net heat transfer rate  ̇    and the total wetted area of 

the microchannels   .    is the overall surface efficiency of the microchannel heat sink, defined as 

      
   

  
(    )  

(7) 

where    represents the wetted area of a microchannel fin and    is the efficiency of a fin with an 

adiabatic tip. This adiabatic assumption is valid due to the heat transfer to the cover plate being 

significantly lower than the heat transfer to the liquid in the microchannels. It is calculated as 

    
      

  
  (8) 

where 

    
  

     
  (9) 

The heat transfer coefficient is initially calculated assuming an overall surface efficiency of 100% and is 

iterated by calculating new values for efficiency until the value of the heat transfer coefficient converges. 

The overall efficiencies of the microchannel heat sink were found to be above 95.6% for all cases. 
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4. Results and Discussion 

The results are split into two heating cases as previously described: (1) hotspots that span the length 

or width of the heat sink tested with increasing power input against an unpowered background, and (2) 

non-uniform heating conditions with a peak along the width or length of the heat sink. 

In cases 1a through 1c, 5 of the 25 individual heating elements are powered up to simulate a hotspot 

while the rest are unpowered. The total power supplied to these heating elements is incremented until the 

maximum allowable wall temperature is reached. In case 1d, a dual hotspot, 10 of the 25 individual 

heating elements are powered up. For the second set of non-uniform heating cases (2a and 2b), all of the 

heating elements are initially supplied the same power level, resembling a uniform heating case. The 

power to 5 of the 25 heating elements is proportionally incremented, while maintaining a constant total 

power input to the entire test section. 

 

4.1 Case 1: Hotspot Heating 

The maximum total power input, maximum local heat flux at that power, and maximum local wall 

temperature are summarized for all cases in Table 1. For Case 1, as the power input increases, the heat 

flux to the fluid,   
 , always reaches a maximum above the active heater elements. The individual trends 

for each single hot spot are described below. Case 1d is discussed in Supplementary Note 1. 

Case 1a (Central Transverse Hotspot): The first heating profile tested was with a central transverse 

hotspot. The five transverse heater elements located along the center of the flow length were supplied 

with power, while the remaining 20 were turned off. The maximum heat flux recorded is 24.23 W/cm
2
. 

Even though heat is only generated in 5 of the 25 heater elements, significant lateral conduction causes 

the remaining 20 heater locations to also experience positive heat fluxes ranging from 0.29 W/cm
2
 to 2.73 

W/cm
2
 for a power input of 32.4 W, with the value depending on distance from the heated elements. The 

heat flux transferred to the fluid along the flow length for increasing input power levels is shown in 

Figure 4a. 

The wall temperature reaches a maximum at the central transverse strip of powered heater elements. 

The input power is incremented until the maximum temperature reaches 136.9 °C; further increases 

would damage the test chip and solder joint. The measured wall temperatures along the flow length for 

increasing input power levels are shown in Figure 4b. The wall temperatures downstream of the activated 

heater elements are higher than at the upstream elements; a difference of 7.93 °C exists between the inlet 

and outlet at a power input of 32.4 W due to the temperature rise of the bulk fluid. The maximum bulk 

fluid temperature is calculated to be 99.1 °C (the local saturation temperature at the measured pressure); 

the largest bulk fluid temperature gradient is observed as fluid flows over the hotspot. 
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Boiling curves are constructed from the heat flux transferred to the fluid and the wall excess 

temperature, and are shown in Figure 5 for sensors 3, 13, and 23. The wall excess temperature is 

calculated with respect to the local bulk fluid temperature in the case of single-phase flow, and the 

saturation temperature in two-phase operation. As the heat flux is increased, the slope of the curve is 

initially constant, reflecting the relatively constant single-phase heat transfer coefficient. For the upstream 

and downstream sensors, which are not actively powered, the heat flux is initially negative because the 

fluid is hotter than the wall and transfers heat to the substrate; this continues until a higher power input is 

reached and the active strip of heaters spreads heat to these locations. Boiling begins at the heated sensor 

location at a local heat flux of 16.8 W/cm
2
 and a 38.2 °C excess temperature, and is indicated by the 

increased slope in the boiling curve. This incipience of boiling is confirmed via in situ visualization 

(shown in Supplementary Video 1). Lower power input levels produced bubbly flow while an increased 

power input led to slug flow. At the largest power input, large vapor regions can be seen. All 

visualizations shown herein have a field of view that captures the boiling behavior over the entire test 

chip. After boiling incipience occurs at sensor 13, the downstream wall temperature at sensor 23 

decreases; the increased (two-phase) heat transfer coefficient at the heated sensor location draws a larger 

percentage of the heat out of the center and keeps it from spreading by conduction to the outlet. 

Case 1b (Central Streamwise Hotspot): The next heating profile tested was with a central 

streamwise hotspot, with only the five streamwise heater elements located along the center of the heat 

sink powered. In the streamwise direction, the largest heat flux occurs at the inlet; while the heat flux has 

a local peak at the location of boiling, the global maximum occurs at the inlet due to entrance effects. As 

in Case 1a, there is significant lateral conduction through the chip, and the remaining 20 sensors have 

small positive heat fluxes ranging from 0.80 W/cm
2
 to 4.37 W/cm

2
 at a total power input of 25.6 W. The 

heat flux to the fluid is plotted across the central transverse temperature sensors for increasing power 

input levels in Figure 6a. The trends in the flow direction along the single strip of active heaters closely 

resemble the uniform heating trends presented later in this work for Case 2b; however, significant 

differences are observed transverse to the flow direction. 

As the power input increases, the wall temperature is always highest at the hotspot. Along the hotspot 

in the streamwise direction, the highest wall temperature occurs at the outlet, as would be observed in a 

uniform heating case under similar conditions. The wall temperatures measured across the central 

transverse sensors at increasing input power levels to the hotspot elements are plotted in Figure 6b. The 

maximum allowable operating temperature in the chip is reached at a total power input that is lower by 

26.6% for the streamwise hot spot compared to the transverse hot spot, due to the bulk fluid temperature 

increase along the flow length in the streamwise case. Along the hotspot, the fluid temperature reaches the 

saturation temperature roughly halfway along the flow length. 
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Boiling curves (wall heat flux versus excess temperature at the wall) are shown in Figure 7 for 

sensors 3, 13, and 23. Up to a total power input of 18.4 W, the streamwise hotspot channels exhibit 

single-phase operation. The steeper slope for the inlet sensor in the boiling curve is attributed to entrance 

effects. Boiling only occurs in the hotspot channels, and begins at a heat flux of 8.80 W/cm
2
 and a wall 

excess temperature of 26.9 °C at the outlet (high-speed visualizations at this condition are shown in 

Supplementary Video 2). As the power level increases, the location of incipience of boiling advances 

closer to the inlet. As this occurs, the heat flux transferred to the fluid decreases at the outlet (while the 

wall temperature upon dryout continues to increase) due to conduction spreading toward the lower 

temperature upstream area. 

Case 1c (Inlet Transverse Hotspot): A transverse hotspot at the inlet, with the first row of elements 

activated, is considered next. The heat flux to the fluid is plotted across the central streamwise column at 

increasing power input levels in Figure 8a. It can be seen that 98% of the input heat is transferred to the 

fluid over the heated length, which is the first 2.54 mm, or 20%, of the total flow length (compared to 

77.6% for the centrally located heated length in Case 1a). There is less heat spreading in this case 

compared to Case 1a due to the absence of an upstream flow length to contribute to heat spreading.  In 

addition, the fluid reaches the saturation temperature near the inlet, rendering the downstream portion of 

the heat sink less effective. This reduces heat  spreading to the downstream locations. The flow length 

downstream of the hotspot is longer than in Case 1a, allowing the outlet wall temperature to decrease 

below the fluid saturation temperature. The wall temperatures measured along the central streamwise 

temperature elements with increasing power input levels are shown in Figure 8b. Boiling curves of the 

wall heat flux versus the excess wall temperature are shown in Figure 9 for sensors 3, 13, and 23. Boiling 

begins at the inlet hotspot at a heat flux of 23.1 W/cm
2
 and a wall excess temperature of 42.5 °C (high-

speed visualizations at this condition are shown in Supplementary Video 3). As in Case 1a, lower power 

input levels produce bubbly flow while an increased power input leads to slug flow. At higher power 

levels, long slugs of vapor form at the hotspot and begin to condense at the outlet. 

 

4.2 Case 2: Non-Uniform Peak-Heating 

The degree of nonuniformity imposed in the distribution of a given total input power to different 

portions of the chip is quantified by comparing the amount of peak heating to the background heating 

through the parameter 

   

        
     

 
       
    

         
     

  (10) 
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where     refers to the total power input to the heater elements in a region, and   refers to the number of 

heater elements in that region. The subscripts      and     refer to the heater element regions at peak 

and background power inputs, respectively. With this definition, a uniform heating case gives    0 

while a hotspot case gives    1. 

Case 2a (Non-uniform Transverse Peak): For the central transverse peak heating case, 17 discrete 

  values were imposed at an average constant total input power level of 33 W. The total power input for 

each of the peak heating cases studied, along with the maximum local heat fluxes for    1 (hotspot) and 

   0 (uniform heating),  are summarized in Table 2. The heat flux to the fluid over the flow length for 

increasing   values is shown in Figure 10a. As the difference between the peak and background heater 

power levels increases (at a constant total power input), the heat flux to the fluid increases at the central 

transverse heater elements. The heat flux upstream of the transverse peak-heated strip is greater than that 

downstream due to the higher heat transfer coefficient at the inlet.  

As the degree of nonuniformity   increases, the highest wall temperatures are seen along the 

transverse central heater elements; however at very low values of  , the wall temperature is highest at the 

outlet as would be expected for a uniform heating case with increasing streamwise temperature in the 

single-phase fluid. The wall temperatures measured along the flow length for increasing   values are 

shown in Figure 10b. The maximum wall temperatures range from 128.3 °C for a uniform case to 

136.5 °C for    1, and occur at different locations. In a uniform case the maximum wall temperature is 

located at the outlet, while for    1 the maximum wall temperature is located above the peak-heater 

element.  

The heat transfer coefficient was also calculated along the flow length, and is shown in Figure 10c. 

As the input power nonuniformity   increases, the heat transfer coefficient above the peak-heated region 

increases. For nonuniformities with   > 0.38, the highest heat transfer coefficient is observed at the 

transverse central heater elements, where boiling occurs locally. At the central heater element (sensor 13), 

the heat transfer coefficient ranges from 1870 W/m
2
K for a uniform case to 5970 W/m

2
K at   1. 

Boiling does not occur at the inlet for any of the   values investigated, and therefore the heat transfer 

coefficient remains unchanged at the upstream locations (sensors 1-10). Once vigorous boiling starts 

above the heated strip, the heat transfer coefficient at the outlet sees a significant drop. This is similar to 

the effect seen in the corresponding hotspot case, Case 1a. At large   values, more effective heat transfer 

at the heated sensor locations reduces the heat available for spreading to the outlet, reducing the local wall 

temperature and heat flux in the outlet region, but maintaining a high fluid temperature due to upstream 

boiling. 

Figure 11 plots the heat transfer coefficient as a function of temperature difference between the wall 

and fluid for sensors 3, 13, and 23. Boiling occurs at the peak transverse heat input locations for all   
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values greater than zero. Therefore, as the surface temperature increases with increasing  , the heat 

transfer coefficient at sensor 13 increases significantly, as expected for a boiling regime. The single-phase 

heat transfer coefficient at the inlet sensor remains relatively constant. The heat transfer coefficient at the 

outlet sensor increases for the early part of the increase in  , and subsequently decreases, even as the wall 

excess temperature continually decreases. The increase at low   values occurs because of the relatively 

constant heat flux transferred to the fluid at that location due to heat spreading, coupled with a decrease in 

the difference between the wall and fluid temperatures. For large   values, the heat transfer coefficient 

reduction is likely due to a combination of a reduced heat flux (brought about by reduced heat spreading) 

and a high local vapor quality at the outlet. 

High-speed images extracted from videos (Supplementary Video 5) at different degrees of 

nonuniformity   are shown in Figure 12 for a central transverse peak-heating profile. In the figure, the 

degrees of nonuniformity of 0.15, 0.38, 0.66, and 1.0 are shown; a significant difference in the number of 

active boiling channels can be seen over this range. For    0.15, boiling does not occur in all of the 

channels, and some channels display more vigorous boiling than others. As the local heat flux increases, 

boiling is observed in more of the channels for    0.38, and in all of the channels for    0.66 and for 

   1. Additionally, the location of boiling incipience moves toward the peak-heated sensors as   

increases. 

Case 2b (Non-uniform Streamwise Peak): Non-uniform peak heating in the orthogonal direction is 

tested in Case 2b with a central streamwise peak. Fifteen discrete   values were imposed with a constant 

total input power of 24.4 W. As with the transverse peak, the heat transferred to the fluid peaks at the 

central streamwise heater elements as the difference between the peak and background heater power   

increases. The heat flux to the fluid in the central transverse heater elements for increasing   values is 

shown in Figure 13. 

As   increases, the wall temperature becomes highest at the central heater elements, and increases in 

the streamwise direction. The maximum wall temperature ranges from 121.2 °C for a uniform case to 

138.7 °C for    1. The wall temperatures measured along the flow length for increasing   values are 

shown in Figure 14a. At low values of  , the wall temperature continually increases from inlet to outlet, 

indicating single-phase heat transfer. As   increases to 0.17, boiling occurs near the outlet and the wall 

temperatures for the last two sensors become constant while those near the inlet continue to rise. As the 

location of boiling advances toward the inlet (   0.61), dryout conditions occur at the outlet and the 

outlet wall temperature begins to rise again. 

As the degree of nonuniformity   is increased, the associated spatial variation of heat transfer 

coefficient yields insights into the underlying heat transfer mechanisms. The heat transfer coefficients 

along the flow length are shown for increasing   values in Figure 14b. Initially, for uniform heating 
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conditions (   0), the flow remains entirely in the single-phase regime along the entire channel length. 

The heat transfer coefficient is greatest at the inlet (3870 W/m
2
K) due to entrance effects, and 

asymptotically decreases to a fully developed, constant value (1290 W/m
2
K). The relative magnitude of 

this entrance-effect enhancement is similar to that observed in a previous study [24] for uniform heating 

conditions. With an increase in   to 0.17, the upstream trend remains similar; however, boiling incipience 

occurs near the outlet, and the heat transfer coefficient increases at this location. As   increases further, 

the location of boiling incipience advances upstream, and the associated heat transfer coefficient increase 

propagates in the same direction. Ultimately, boiling occurs at the inlet, and a maximum heat transfer 

coefficient of 4440 W/m
2
K is observed at this location for    1. At the outlet, while the heat transfer 

coefficient initially increases as boiling occurs and moves upstream, the heat transfer coefficient 

decreases as the nonuniformity reaches    0.61. This is indicative of partial dryout in the downstream 

ends of the central channels. 

The heat transfer coefficient is shown as a function of wall excess temperature in Figure 15 for 

sensors 3, 13, and 23. In this case, boiling begins at the outlet at a low value of   and the location moves 

upstream at higher   values. As the location of boiling moves upstream, the heat transfer coefficient at 

the middle sensor increases sharply. The heat transfer coefficient at the outlet sensor peaks and then 

begins to decrease at higher   values as the more effective boiling incipience regime moves upstream. 

Boiling only occurs at the central strip of streamwise heater elements shown in the figure. 

Images extracted from high-speed videos (Supplementary Video 6) at different degrees of 

nonuniformity   are shown in Figure 16 for a central streamwise peak-heating profile; degrees of 

nonuniformity of 0.01, 0.23, 0.61, and 1.0 are shown. Boiling does not occur in all of the channels for all 

values of  . At high   values, significant flow reversal can be seen in the central channels above the 

peak-heated sensors, causing flow maldistribution in the heat sink and partial dryout at the outlet. At these 

large values the heated channels contain a very large amount of vapor while neighboring channels exhibit 

bubbly flow. Boiling in the channels associated with the peak-heated elements causes an increase in the 

local pressure drop, forcing both liquid and vapor bubbles back into the inlet manifold. Vapor in the inlet 

manifold reroutes to channels with lower flow resistance where little or no boiling occurs. A reduced flow 

rate in the channels above the peak-heated sensors causes the remaining liquid to vaporize entirely, 

causing partial dryout. Once a significant amount of vapor leaves the channel through the outlet, the 

pressure equalizes, liquid flows back into the channels above the peak-heated sensors, and the process 

repeats. 

 

5. Conclusions 



14 

 

The effects of non-uniform hot spots and heating profiles in a microchannel heat sink on heat transfer 

coefficients, wall temperatures, and the location of boiling incipience were investigated. To properly 

assess the local heat dissipation under non-uniform heating conditions, lateral conduction through the 

microchannel heat sink base was taken into account. Experimental results show that even with a very thin 

substrate, significant lateral conduction occurs in the base of the heat sink. 

Single hotspots that span the width or length of a silicon microchannel heat sink were investigated as 

a function of increasing local heat flux. In the case of a transverse hotspot in the center of the heat sink, 

once boiling begins in the heated sensor location, the wall temperature at the outlet decreases and 

conduction away from the center is mitigated due to reduced convection thermal resistance. In the case of 

a streamwise hotspot along the central column of the heat sink, conduction causes some lateral heating, 

but boiling only occurs in the channels located above the hotspot. In this configuration, the maximum 

sustainable total power input achieved is reduced by 26.6% compared to the transverse hotspot case. In 

the case of a transverse hotspot located at the inlet, although the maximum sustainable total power input is 

similar to the central transverse hotspot, the local maximum heat flux is increased by 35.7% as a result of 

significantly reduced upstream heat spreading. These test cases show that the same total power input 

distributed in different locations and configurations across the heat sink can cause significantly different 

limits on the maximum heat fluxes and wall temperatures that can be supported. 

A second non-uniform heating condition was investigated to understand the effect of the degree of 

nonuniformity imposed in the distribution of a given total input power to different portions of the chip, by 

incrementing the nonuniformity between the peak and background heat flux values. For non-uniform 

transverse peak-heating profiles, an increase in the heating nonuniformity results in significant boiling at 

the location of the peak heat input, whereas no boiling occurs under uniform heating conditions. For non-

uniform streamwise peak-heating profiles, an increase in the heating nonuniformity for a constant total 

power input results in boiling at the location of the peak heat input location; the location of boiling 

incipience moves upstream as the nonuniformity increases. For both hotspot and peak heating in the 

streamwise direction, significant flow reversal is observed leading to dryout in the channels above the 

peak heated region. In both cases, the local heat transfer coefficients and wall temperatures deviate 

significantly from a uniformly heated case. Local heat flux concentrations result in high local two-phase 

flow heat transfer coefficients, but at the expense of increased wall temperatures. 
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Nomenclature 

   heat sink base area (m
2
) 

   wetted area of a fin (m
2
) 

   total wetted area of the microchannels (m
2
) 

   specific heat (J m
-2

K
-1

) 

  microchannel depth (m) 

  mass flux (kg m
-2

s
-1

) 

  heat transfer coefficient (W m
-2

K
-1

) 

    thermal conductivity of silicon (W m
-1

K
-1

) 

  heat sink width (m) 

  variable in fin efficiency calculation (m
-1

) 

  number of microchannels, heaters 

  power input (W) 

  
  base heat flux (W m

-2
) 

 ̇     heat conduction (W) 

 ̇    heat generation (W) 

 ̇     heat loss (W) 

 ̇    total heat transferred to the fluid (W) 

  
  wall heat flux (W m

-2
) 

   diode temperature (C) 

   fluid temperature (C) 

    inlet fluid temperature (C) 

   wall temperature (C) 

  heat sink thickness (m) 

  microchannel width (m) 

   fin width (m) 

Greek Symbols 

   fin efficiency 

   overall heat sink efficiency 

  degree of nonuniformity 
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Subscripts 

     peak-heater element region 

  heater element in the flow direction 

  heater element in the transverse direction 

    background heater element region 
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Table 1. Summary of results for the hotspot heating cases. 

 
Maximum Total 

Power Input (W) 

Maximum Local 

Heat Flux (W/cm
2
) 

Maximum Local Wall 

Temperature (°C) 

Case 1a: Central 

transverse hotspot 
32.4 24.23 136.9 

Case 1b: Central 

streamwise hotspot 
25.6 16.14 146.3 

Case 1c: Inlet 

transverse hotspot 
35.8 32.89 138.8 

Case 1d: Dual 

transverse hotspots 
65.0 32.21 133.7 

 

Table 2. Summary of results for the peak heating cases. 

 
Total Power 

Input (W) 

Maximum Local Heat 

Flux,    1 (W/cm
2
) 

Maximum Local Heat 

Flux,    0 (W/cm
2
) 

Case 2a: Non-uniform 

transverse peak 
33.0 23.70 8.17 

Case 2b: Non-uniform 

streamwise peak 
24.4 15.29 6.23 
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Figure 1. (a) Image of the microchannel test section and (b) images of the 5 × 5 array of heater elements 

and a schematic diagram of the microchannel heat sink. 
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Figure 2. Schematic diagram of the experimental setup showing the flow loop components and high-

speed visualization optics. 
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Figure 3. (a) Hotspot, and (b) non-uniform peak-heating profile configurations investigated in the current 

study. 
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Figure 4. (a) Local heat flux transferred to the fluid, and (b) wall temperature along the flow length at 

increasing power input levels for a central transverse hotspot. The local quantities are presented for the 

central streamwise elements, as indicated by the dark black rectangle in the heater power diagram. 
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Figure 5. Heat flux transferred to the fluid plotted against the wall excess temperature for sensors 3, 13, 

and 23 for a central transverse hotspot. 
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Figure 6. (a) Local heat flux transferred to the fluid, and (b) wall temperature over the width of the chip 

for increasing power input levels for a central streamwise hotspot. The local quantities are presented for 

the transverse elements, as indicated by the black line on the heater power diagram. 
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Figure 7. Heat flux transferred to the fluid plotted against the wall excess temperature for sensors 3, 13, 

and 23 for a central streamwise hotspot. 
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Figure 8. (a) Local heat flux transferred to the fluid, and (b) wall temperature over the length of the chip 

for increasing power input levels for an inlet transverse hotspot. The local quantities are presented for the 

streamwise elements, as indicated by the black line on the heater power diagram. 

  



31 

 

 
Figure 9. Heat flux transferred to the fluid plotted against the wall excess temperature for sensors 3, 13, 

and 23 for an inlet transverse hotspot. 
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Figure 10. (a) Local heat flux transferred to the fluid, (b) wall temperature, and (c) heat transfer 

coefficient over the flow length at increasing degrees of nonuniformity between the heat flux at the peak 

and the background heater locations for Case 2a.  
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Figure 11. The heat transfer coefficient as a function of excess wall temperature for sensors 3, 13, and 23 

for Case 2a. 
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Figure 12. Images at increasing 𝚽 values for a central transverse peak extracted from high-speed video 

(Supplementary Video 5). Red lines indicate the locations of the peak-heated sensors. 
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Figure 13. The local heat flux transferred to the fluid over the width of the chip at increasing degrees of 

nonuniformity between the heat flux at the peak and background heater location for Case 2b. 
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Figure 14. (a) Local wall temperature, and (b) heat transfer coefficient over the flow length at increasing 

degrees of nonuniformity between the heat flux at the peak and background heater locations for Case 2b. 
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Figure 15. The heat transfer coefficient plotted against the wall excess temperature for sensors 3, 13, and 

23 for Case 2b. 
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Figure 16. Images at increasing 𝚽 values for a central streamwise peak extracted from high-speed video 

(Supplementary Video 6). Red lines indicate the locations of the peak-heated sensors. 
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