5,421 research outputs found

    First-principles study on the effective masses of zinc-blend-derived Cu_2Zn-IV-VI_4 (IV = Sn, Ge, Si and VI = S, Se)

    Full text link
    The electron and hole effective masses of kesterite (KS) and stannite (ST) structured Cu_2Zn-IV-VI_4 (IV = Sn, Ge, Si and VI = S, Se) semiconductors are systematically studied using first-principles calculations. We find that the electron effective masses are almost isotropic, while strong anisotropy is observed for the hole effective mass. The electron effective masses are typically much smaller than the hole effective masses for all studied compounds. The ordering of the topmost three valence bands and the corresponding hole effective masses of the KS and ST structures are different due to the different sign of the crystal-field splitting. The electron and hole effective masses of Se-based compounds are significantly smaller compared to the corresponding S-based compounds. They also decrease as the atomic number of the group IV elements (Si, Ge, Sn) increases, but the decrease is less notable than that caused by the substitution of S by Se.Comment: 14 pages, 6 figures, 2 table

    Identification of Log Characteristics in Computed Tomography Images Using Back-Propagation Neural Networks with the Resilient Back-Propagation Training Algorithm and Textural Analysis: Preliminary Results

    Get PDF
    This research addressed the feasibility of identifying internal log characteristics in computed tomography (CT) images of sugar maple and black spruce logs by means of back-propagation (BP) neural networks with a resilient BP training algorithm. Five CT images were randomly sampled from each log. Three of the images were used to develop the corresponding classifier, and the remaining two images were used for validation. The image features that were used in the classifier were gray-level values, textual, and distance features. The important part of the classifier topology, ie the hidden node number, was determined based on the performance indicators: overall accuracy, mean square error, training iteration number, and training time. For the training images, the classifiers produced class accuracies for heartwood, sapwood, bark, and knots of 99.3, 100, 96.7, and 97.9%, respectively, for the sugar maple log; and 99.7, 95.3, 98.4, and 93.2%, respectively, for the black spruce log. Overall accuracies were 98.5% for sugar maple and 96.6% for black spruce, respectively. High overall accuracies were also achieved with the validation images of both species. The results also suggest that using textural information as the inputs can improve the classification accuracy. Moreover, the resilient BP training algorithm made BP artificial neural networks converge faster compared with the steepest gradient descent with momentum algorithm. This study indicates that the developed BP neural networks may be applicable to identify the internal log characteristics in the CT images of sugar maple and black spruce logs

    Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols

    Get PDF
    We explore the extent to which chemistry-aerosol-climate coupling influences predictions of future ozone and aerosols as well as future climate using the Goddard Institute for Space Studies (GISS) general circulation model II' with on-line simulation of tropospheric ozone-NO_x-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. Based on IPCC scenario A2, year 2100 ozone, aerosols, and climate simulated with full chemistry-aerosol-climate coupling are compared with those simulated from a stepwise approach. In the stepwise method year 2100 ozone and aerosols are first simulated using present-day climate and year 2100 emissions (denoted as simulation CHEM2100sw) and year 2100 climate is then predicted using offline monthly fields of O_3 and aerosols from CHEM2100sw (denoted as simulation CLIM2100sw). The fully coupled chemistry-aerosol-climate simulation predicts a 15% lower global burden of O_3 for year 2100 than the simulation CHEM2100sw which does not account for future changes in climate. Relative to CHEM2100sw, year 2100 column burdens of all aerosols in the fully coupled simulation exhibit reductions of 10–20 mg m^−2 in DJF and up to 10 mg m^−2 in JJA in mid to high latitudes in the Northern Hemisphere, reductions of up to 20 mg m^−2 over the eastern United States, northeastern China, and Europe in DJF, and increases of 30–50 mg m^−2 over populated and biomass burning areas in JJA. As a result, relative to year 2100 climate simulated from CLIM2100sw, full chemistry-aerosol-climate coupling leads to a stronger net global warming by greenhouse gases, tropospheric ozone and aerosols in year 2100, with a global and annual mean surface air temperature higher by 0.42 K. For simulation of year 2100 aerosols, we conclude that it is important to consider the positive feedback between future aerosol direct radiative forcing and future aerosol concentrations; increased aerosol concentrations lead to reductions in convection and precipitation (or wet deposition of aerosols), further increasing lower tropospheric aerosol concentrations

    Huperzine A for treatment of cognitive impairment in major depressive disorder: A systematic review of randomized controlled trials

    Get PDF
    Background: Acetylcholinesterase (AChE) inhibitors have been shown to be effective in treating cognitive impairment in animal models and in human subjects with major depressive disorder (MDD). Huperzine A (HupA), a Traditional Chinese Medicine derived from a genus of clubmosses known as Huperzineserrata, is a powerful AChE inhibitor that has been used as an adjunctive treatment for MDD, but no meta-analysis on HupA augmentation for MDD has yet been reported. Aim: Conduct a systematic review and meta-analysis of randomized controlled trials (RCTS) about HupA augmentation in the treatment of MDD to evaluate its efficacy and safety. Methods: Two evaluators independently searched nine English-language and Chinese-language databases, selected relevant studies that met pre-determined inclusion criteria, extracted data about outcome and safety, and conducted quality assessments and data synthesis. Results: Three low-quality RCTs (pooled n=238) from China were identified that compared monotherapy antidepressant treatment for depression versus combined treatment with antidepressants and HupA. Participants in the studies ranged from 16 to 60 years of age. The average duration of adjunctive antidepressant and HupA treatment in the studies was only 6.7 weeks. All three studies were open label and non-blinded, so their overall quality was judged as poor. Meta-analysis of the pooled sample found no significant difference in the improvement in depressive symptoms between the two groups (weighted mean difference: -1.90 (95%CI: -4.23, 0.44), p=0.11). However, the adjunctive HupA group did have significantly greater improvement than the antidepressant only group in cognitive functioning (as assessed by the Wisconsin Card Sorting Test and the Wechsler Memory Scale-Revised) and in quality of life. There was no significant difference in the incidence of adverse drug reactions between groups. Conclusions: The data available on the effectiveness and safety of adjunctive treatment using HupA in patients with MDD who are receiving antidepressants is insufficient to arrive at a definitive conclusion about its efficacy and safety. Pooling of the data from three low-quality RCTs from China found no advantage of adjunctive HupA in the treatment of depressive symptoms, but adjunctive treatment with HupA was associated with a faster resolution of the cognitive symptoms that frequently accompany MDD

    Coexistence of hexatic and isotropic phases in two-dimensional Yukawa systems

    Full text link
    We have performed Brownian dynamics simulations on melting of two-dimensional colloidal crystal in which particles interact with Yukawa potential. The pair correlation function and bond-orientational correlation function was calculated in the Yukawa system. An algebraic decay of the bond orientational correlation function was observed. By ruling out the coexistence region, only a unstable hexatic phase was found in the Yukawa systems. But our work shows that the melting of the Yukawa systems is a two-stage melting not consist with the KTHNY theory and the isotropic liquid and the hexatic phase coexistence region was found. Also we have studied point defects in two-dimensional Yukawa systems.Comment: 9 pages, 8 figures. any comments are welcom

    On the Capacity Region of Reconfigurable Intelligent Surface Assisted Symbiotic Radios

    Full text link
    In this paper, we are interested in reconfigurable intelligent surface (RIS)-assisted symbiotic radio (SR) systems, where an RIS assists a primary transmission by passive beamforming and simultaneously acts as an information transmitter by periodically adjusting its reflecting coefficients. The above modulation scheme innately enables a new multiplicative multiple access channel (M-MAC), where the primary and secondary signals are superposed in a multiplicative and additive manner. To pursue the fundamental performance limits of the M-MAC, we focus on the characterization of the capacity region of such systems. Due to the passive nature of RISs, the transmitted signal of the RIS should satisfy the peak power constraint. Under this constraint at the RIS as well as the average power constraint at the primary transmitter (PTx), we analyze the capacity-achieving distributions of the transmitted signals and characterize the capacity region of the M-MAC. Then, theoretical analysis is performed to reveal insights into the RIS-assisted SR. It is observed that: 1) the capacity region of the M-MAC is strictly convex and larger than that of the conventional TDMA scheme; 2) the secondary transmission can achieve the maximum rate when the PTx transmits the constant envelope signals; 3) and the sum rate can achieve the maximum when the PTx transmits Gaussian signals and the RIS transmits the constant envelope signals. Finally, extensive numerical results are provided to evaluate the performance of the RIS-assisted SR and verify the accuracy of our theoretical analysis

    A hybrid systematic narrative review of instruments measuring home-based care nurses\u27 competency

    Get PDF
    Aim: The aim of the study was to identify and synthesize the contents and the psychometric properties of the existing instruments measuring home-based care (HBC) nurses\u27 competencies. Design: A hybrid systematic narrative review was performed. Review Methods: The eligible studies were reviewed to identify the competencies measured by the instruments for HBC nurses. The psychometric properties of instruments in development and psychometric testing design studies were also examined. The methodological quality of the studies was evaluated using the Medical Education Research Study Quality Instrument and COSMIN checklist accordingly. Data Sources: Relevant studies were searched on CINAHL, MEDLINE (via PubMed), EMBASE, PsychINFO and Scopus from 2000 to 2022. The search was limited to full-text items in the English language. Results: A total of 23 studies reporting 24 instruments were included. 12 instruments were adopted or modified by the studies while the other 12 were developed and psychometrically tested by the studies. None of the instruments encompassed all of the 10 home-based nursing care competencies identified in an earlier study. The two most frequently measured competencies were the management of health conditions, and critical thinking and problem-solving skills, while the two least measured competencies were quality and safety, and technological literacy. The content and structural validity of most instruments were inadequate since the adopted instruments were not initially designed or tested among HBC nurses. Conclusion: This review provides a consolidation of existing instruments that were used to assess HBC nurses\u27 competencies. The instruments were generally not comprehensive, and the content and structural validity were limited. Nonetheless, the domains, items and approaches to instrument development could be adopted to develop and test a comprehensive competency instrument for home-based nursing care practice in the future. Impact: This review consolidated instruments used to measure home-based care nurses\u27 competency. The instruments were often designed for ward-based care nurses hence a comprehensive and validated home-based nursing care competency instrument is needed. Nurses, researchers and nursing leaders could consider the competency instruments identified in this review to measure nurses\u27 competencies, while a home-based nursing care competency scale is being developed. Patient or Public Contribution: No patient or public contribution was required in this review
    • …
    corecore