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Abstract. This research addressed the feasibility of identifying internal log characteristics in computed
tomography (CT) images of sugar maple and black spruce logs by means of back-propagation (BP) neural
networks with a resilient BP training algorithm. Five CT images were randomly sampled from each log.
Three of the images were used to develop the corresponding classifier, and the remaining two images were
used for validation. The image features that were used in the classifier were gray-level values, textual, and
distance features. The important part of the classifier topology, ie the hidden node number, was deter-
mined based on the performance indicators: overall accuracy, mean square error, training iteration num-
ber, and training time. For the training images, the classifiers produced class accuracies for heartwood,
sapwood, bark, and knots of 99.3, 100, 96.7, and 97.9%, respectively, for the sugar maple log; and 99.7,
95.3, 98.4, and 93.2%, respectively, for the black spruce log. Overall accuracies were 98.5% for sugar
maple and 96.6% for black spruce, respectively. High overall accuracies were also achieved with the
validation images of both species. The results also suggest that using textural information as the inputs can
improve the classification accuracy. Moreover, the resilient BP training algorithm made BP artificial
neural networks converge faster compared with the steepest gradient descent with momentum algorithm.
This study indicates that the developed BP neural networks may be applicable to identify the internal log
characteristics in the CT images of sugar maple and black spruce logs.
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INTRODUCTION

The properties and value of lumber depend on
internal log characteristics such as sapwood,
heartwood, and knots. Knowledge of internal log
characteristics is thus useful in optimizing log
breakdown strategies for extracting maximum
value. Different sawing strategies can lead to
large differences in lumber value recovery
(Richards 1980) and lack of information on in-
ternal log characteristics impedes optimal saw-
ing (Occeña 1991). Potential gains of approxi-
mately 10 – 15% in lumber value can be
achieved based on log internal information
(Richards 1977; Lemieux et al 2002). The com-
puted tomography (CT) scan (Hounsfield 1980)
is an emerging technique for acquiring informa-
tion of internal log characteristics nondestruc-
tively. CT scanning provides cross-sectional im-
ages in planes. A CT image is composed of pix-
els, or picture elements, which are squares
corresponding to the spatial resolution of the im-
age. For each pixel, a brightness measured in
terms of gray level (GL) values is acquired from
the corresponding volume element (voxel) of the
scanned section. The GL values describe the X-
ray attenuation of the material. For wood, the
attenuation is closely correlated to the wood
density. Therefore, the produced CT images of a
log reflect the density of the internal log. The
scanner is set so that brighter regions (ie regions
with higher pixel GL values) correspond to re-
gions of denser material.

Besides optimizing log breakdown strategies,
the information derived from CT images has
also been used for wood drying and quality con-
trol (Pang and Wiberg 1998). To extract reliable
internal log information from CT images, cor-
rect interpretation of the CT images is crucial.
Grundberg (1994) proposed an algorithm that
was mainly based on the high contrast between
knots and heartwood to obtain the parametric
description of the knot structure in pine logs.
Zhu et al (1996) analyzed morphological image
features such as the shape of knots based on
geometric and statistical attributes. Rojas et al
(2006) and Wei et al (2008) applied the maxi-
mum likelihood classifier to identify clear wood

and knots in sugar maple logs. The main draw-
back of these works is that classification accu-
racy achieved by these methods is relatively low
(70–80% overall accuracy).

Another method that is widely used for process-
ing digital images is the artificial neural net-
works (ANN) approach (Sjoberg 1995). It was
originally developed to model the way the brain
performs particular tasks. ANNs can model gen-
eral nonlinear functions. Among all the ANN
types, the feed-forward back-propagation (BP)
ANN is commonly used because it is effective
for pattern-matching problems and is easy to use
(Schmoldt et al 2000). Schmoldt et al (2000)
applied this type of ANNs to identify clear
wood, bark, and knots in oak, yellow poplar, and
black cherry. Nordmark (2002) also used this
ANN to identify clear wood and knots in Scots
pine, achieving 85–95% overall classification
accuracy. The image feature used in these ANN
classifiers is GL values. However, to date, im-
portant spatial image information like the ones
extracted from textural analysis as the input fea-
ture for the classifier has not yet been investi-
gated thoroughly. Furthermore, the steepest gra-
dient descent with momentum algorithm (Free-
man and Skapura 1991) is widely used as the
training algorithm of BP ANNs for identification
of log properties. In practice, this algorithm is
time-consuming. Riedmiller and Braun (1993)
showed that a faster converging BP training al-
gorithm is the resilient BP training algorithm.
Such an algorithm has not yet been used in BP
ANNs for identifying log characteristics.

The main objective of this study is to investigate
the feasibility of feed-forward BP ANNs with
the resilient BP training algorithm for identifi-
cation of selected log characteristics in CT im-
ages acquired from sugar maple and black
spruce logs. The input features used in the study
were not only the raw GL values, but also the
textural features computed by a textural analy-
sis. This study is different than those of
Schmoldt et al (2000) and Nordmark (2002) be-
cause it uses textural features (Table 1) as the
inputs and a faster converging training algorithm
for the BP ANNs. Moreover, the BP ANN’s
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performance in hardwoods (sugar maple) and
softwoods (black spruce) was compared.

A comparison between BP ANNs with and with-
out textural information was also presented in
this study. Meanwhile, the resilient BP training
algorithm was compared with the traditional
training algorithm, ie the steepest gradient de-
scent with momentum algorithm.

MATERIALS AND METHODS

Materials

In this study, BP ANN classifiers were devel-
oped for two species, including one hardwood,
sugar maple (Acer saccharum), and one soft-
wood, black spruce (Picea mariana). The sugar
maple sample tree was collected from a natural
stand nearby Fredericton, New Brunswick. The

tree was 32-yr old with a 19-cm diameter at
breast height (DBH) and a height of 12.5 m. The
black spruce tree was collected from an initial
spacing trial nearby Thunder Bay, Ontario. The
sample tree was 48-yr old with a 17.1-cm DBH
and a height of 16.8 m. The butt logs from these
trees were collected for this study. Both logs
were scanned by a Siemens Somatom Plus 4
Volume Zoom CT scanner at the Institut Na-
tional de la Recherche Scientifique in Quebec
City. The scanning conditions were those rec-
ommended by Hou et al (2005): 140 kV and 178
mA; slice plane, 10-mm thick; exposure time,
1000 s; and room temperature (approximately
20°C). Refer to Bucur (2003) for more details
about CT scanning.

For each log, five CT images were randomly
selected from the log, and a corresponding BP
ANN classifier was developed using three of the
images. They are referenced hereafter as training
images. The remaining two images were used
for validation, and are referenced hereafter as
validation images. The training images and vali-
dation images were sampled from different parts
of the log. Each image had an eight-bit radio-
metric resolution and a size of 512 pixels × 512
lines. The internal log characteristics for both
species that need to be identified include sap-
wood, heartwood, and knots. Inner bark of the
sugar maple (this log was debarked; therefore,
only inner bark remained) and bark of the black
spruce log were also considered.

Removal of Image Background

Each raw CT image has a background that rep-
resents the air surrounding the log. For the sugar
maple images, the GL value of the background
was <45 and any such pixels were removed. For
the black spruce images, most heartwood pixels
also had GL values <45. Euclidean distance be-
tween heartwood and pith of the log cross-
section is always within a certain range. There-
fore, to avoid flagging heartwood pixels as back-
ground, in addition to the GL 45 threshold,
another threshold, the Euclidean distance of 150,
was also used. The pith of the log cross-section

Table 1. Textural features applied in this study.a

Textural feature Formulab

Homogeneity

�
i=0

N−1

�
j=0

N−1 pij

�1 + �i − j�2�

Contrast

�
i=0

N−1

�
j=0

N−1

�i − j�2 × pij

Dissimilarity

�
i=0

N−1

�
j=0

N−1

�|i − j| × pij�

Mean

�
i=0

N−1

�
j=0

N−1

i × pij

Standard deviation ��
i=0

N−1

�
j=0

N−1

�pij × �i − �
i=0

N−1

�
j=0

N−1

i × pij�
2�

Entropy

�
i=0

N−1

�
j=0

N−1

�−pij × loge pij�

Angular second
moment �

i=0

N−1

�
j=0

N−1

pij
2

a From Haralick et al (1973).
b Pij is unnormalized counts that indicate: how many times are two neigh-

boring pixels separated by a displacement (eg one pixel); one with a gray
level (GL) value i and the other with a GL value j. N is the dimension of
gray level co-occurrence matrix (GLCM).
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was automatically determined using the method
proposed by Bhandarkar et al (1999). Any pixels
in the black spruce CT images having a GL
value <45 and a Euclidean distance between the
pixel of interest and the pith of the log cross-
section >150 were removed.

Input Feature Selection

The image features that are extracted from CT
images and used as the inputs for the classifier
play an important role in the classification accu-
racy. Following Wei et al (2008), nine image
features were selected as the input features, in-
cluding 1) the GL value for each pixel of inter-
est; 2) seven textural features; and 3) the Eu-
clidean distance between the pixel of interest
and the pith of the log cross-section (Table 1).
The textural features were computed by the
method of Haralick et al (1973). It is based on a
gray-level co-occurrence matrix within a rectan-
gular moving window. Each pixel of interest
was located at the center of a moving window.
In this study, the size of the moving window is
5 × 5 pixels. The textural analysis of each image
was performed using the TEX program of PCI
Geomatica (PCI Geomatica Inc).

Artificial Neural Network Classifier

The development of BP ANN classifiers in-
cludes three major steps: defining the training

data set, the validation data set, and choosing the
training algorithm; selecting the classifier’s to-
pology; and training the classifiers. The ANN
classifiers were developed using Matlab soft-
ware.

Defining the training, validation data sets, and
selection of the training algorithm. For each
classifier, the training data consisted of a set of
1200 vectors. For each of the three training im-
ages, an automatically random sample was cre-
ated with 100 vectors for each of the four log
characteristics. A validation set consisted of 800
vectors that were randomly sampled from the
two validation images. Each vector consisted of
nine components corresponding to the nine input
features.

The resilient BP training algorithm was selected
as the training method. It can make ANNs con-
verge faster compared with conventional steep-
est gradient descent with momentum algorithms
(Freeman and Skapura 1991; Riedmiller and
Braun 1993). Refer to Riedmiller and Braun
(1993) for more details about the training pro-
cedure using the resilient BP training algorithm.

Classifier’s topology selection. As shown in Fig
1, an ANN generally consists of one input layer,
one or more hidden layers, and one output layer.
Each layer contains a given number of nodes,
which are the fundamental processing elements
of ANNs. The number of layers and nodes in

Figure 1. Topology of the feed-forward back-propagation artificial neural networks used in this study (n is the optimal
number of hidden nodes).
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each layer defines the ANN classifier’s topol-
ogy. The topology has significant influence on
the convergence speed and also on the classifi-
cation accuracy (Nordmark 2002). In this study,
the network topology (Fig 1) consists of one
input layer with nine input nodes corresponding
to the nine input features, and one output layer
with four output nodes corresponding to the four
log characteristics to be identified. With respect
to the number of hidden layers, according to
Mas and Flores (2008), one hidden layer with an
appropriate number of hidden nodes can produce
good classification. Log-sigmoid function was
chosen as the transfer function. The learning rate
was fixed at 0.01.

It is important to choose a correct number of
hidden nodes for the hidden layer. Insufficient
hidden nodes will cause the ANN to be unable to
learn sufficient information from the training
data set for classification. On the other hand, too
many hidden nodes are likely to cause the ANN
to overfit the training data (Rosin and Fierens
1995). In this study, for each species, 25 differ-
ent numbers of hidden nodes were tested for the
corresponding classifier, from 11 hidden nodes
to a maximum of 35 nodes. The hidden node
number was selected for each classifier using the
following performance indicators: 1) producer’s
overall accuracy defined as the number of cor-
rectly classified pixels divided by the total num-
ber of classified pixels (Congalton 1991); it will
be called hereafter overall accuracy; 2) mean
square error (MSE) defined by Freeman and
Skapura (1991):

MSE =
�
i=1

m

�
j=1

n

�dij − yij�
2

m × n

where dij is the desired output for class j corre-
sponding to the ith input vector, and yij is the
actual output produced by the classifier for class
j corresponding to the same input vector; there
are m input vectors and n classes; and 3) the
number of training iterations and training time.
The selection of the hidden node number in-
volves sixfold crossvalidation (Li et al 1996) as

follows: first, the training set was randomly di-
vided into six groups of 200 vectors each and
they were fixed. For a given number of tested
hidden nodes, at each stage of the process, one
of the six groups was reserved as the testing
group. The ANN classifier with the correspond-
ing number of hidden nodes was trained on the
remaining five groups (the training group). The
iteration numbers and the training times were
recorded. The trained classifier was applied for
classification on the reserved testing group and
also on the entire validation set. Overall accura-
cies and MSEs were computed separately for the
testing group and validation set. This process
was repeated six times (the testing group and
training group were changed accordingly each
time). Then an average value for each perfor-
mance indicator was computed for the tested
hidden node number. This procedure was ap-
plied to all tested hidden node numbers exam-
ined one case at a time. The hidden node number
was then selected based on the following rule:
choosing the smallest number of hidden nodes
that can still provide high overall accuracy and
low MSE for both the testing group and the vali-
dation set, as well as a small number of training
iterations, and a short training time for the train-
ing group.

Two major concerned classifiers were then de-
veloped in this study, one for each wood species.
They are referenced thereafter as the sugar
maple classifier and black spruce classifier, re-
spectively. For both the classifiers, textural in-
formation was also used as the inputs, and the
resilient BP training algorithm was chosen as the
training method. The major difference between
the two classifiers is that they were developed
with different species data.

Classification, Postclassification Procedure,
and Accuracy Analysis

Each trained classifier with the selected topol-
ogy was applied to identify log characteristics in
the corresponding log. For each pixel, the nine
input feature values of the pixel were input into
the classifier to compute the outputs (four out-

WOOD AND FIBER SCIENCE, OCTOBER 2008, V. 40(4)624



puts in total). The pixel was classified into the
class for which the corresponding output node
produced a higher output than the other three
output nodes did for the pixel. There were oc-
casionally isolated pixels remaining in the image
after classification. A 5 × 5 pixels median filter
was then used to remove these pixels and de-
fragment the classified image. Areas of each log
characteristic in the CT images were also manu-
ally delineated with the PCI Geomatica soft-
ware. They produced the reference images for
the corresponding classified images and contain
the information of the true class belonging to
each pixel. Two types of variables were com-
puted to quantify the classification accuracy for
both the training images and the validation im-
ages (Congalton 1991): 1) producer’s class ac-
curacy. For one class i, it is defined as number of
pixels labeled as class i in both the reference
image and the classified image divided by total
number of pixels of class i in the reference im-
age. It assesses the classification accuracy for
each class. It will be called hereafter class accu-
racy; 2) producer’s overall accuracy as defined
previously. It is a weighted average classifica-
tion accuracy for all the classes together, here-
after called overall accuracy. Moreover, for the
validation images, the number of false-positive
and false-negative pixels was also computed to

assess the classification accuracy. For one class
i, the amount of false-positive pixels refers to the
amount of pixels classified to class i, that do not
truly belong to class i; the amount of false-
negative pixels refers to the amount of pixels,
which actually belong to class i, and are classi-
fied to other classes. Good classification perfor-
mance requires that both the amount of false-
positive pixels and false-negative pixels should
be low.

The accuracy analysis was undertaken to mainly
answer the following questions: 1) For each spe-
cies, which log characteristics are easily sepa-
rated from the others? and 2) Did the feed-
forward BP ANN produce the same classifica-
tion accuracy for both species? Sixfold
crossvalidation was also applied to the analysis.
Each trained classifier produced six estimates of
the overall accuracy and six estimates of the
class accuracy of each log characteristic for the
validation set (Table 2). These estimates were
then used as samples in the following statistical
analyses, which were performed using Minitab
software (Minitab Inc). A one-way analysis of
variance (ANOVA) was performed to determine
whether there were significant differences
among the class accuracies in each species (p
values of ANOVA of less than 0.05 [�-level]);

Table 2. Overall and class accuracies of each BP ANN classifiera in identifying the four log characteristics in the
computed tomography images for the validation set.

Log Group (no.) Overall accuracy (%)

Class accuracy

Heartwood (%) Sapwood (%) Bark/inner barkb (%) Knots (%)

Sugar maple 1 91.4 100 95.5 88.0 82.0
2 87.0 100 100 80.5 67.5
3 91.8 100 100 85.0 82.0
4 90.5 100 100 84.0 78.0
5 86.6 100 95.0 83.5 68.0
6 90.0 100 100 86.5 73.5

Average 89.5 100 98.4 84.6 75.2
Black spruce 1 91.8 100 77.0 97.5 92.5

2 92.0 99.5 78.5 97.0 93.0
3 91.6 99.5 79.5 98.0 89.5
4 93.3 100 82.0 99.0 92.0
5 92.0 99.5 80.5 95.5 92.5
6 94.0 99.5 86.5 98.5 91.5

Average 92.4 99.7 80.7 97.6 91.8
a The inputs for the classifiers include the textural information and the classifiers were trained with the resilient BP training algorithm.
b Bark for the black spruce log and inner bark for the sugar maple log.
BP, back-propagation; ANN, artificial neural network.
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that is, whether there are some log characteris-
tics separated easily from the others. ANOVA
used the 24 estimates of class accuracies (six
estimates for each of the four log characteristics)
as the statistical samples. If the p value of
ANOVA is less than 0.05, a Tukey’s test (Ghosh
and Sharma 1963) was then applied to determine
which class accuracies were significantly differ-
ent from one another; that is, determining which
specific log characteristics are separated easily
from the others. This test generated several sets
of multiple comparison confidence intervals that
represent ranges of values derived from sample
statistics that are likely to contain the value of an
unknown population parameter. There is no sig-
nificant difference between the class accuracies
for each pair of the log characteristics if the
confidence interval for the subtraction between
the class accuracies of the two characteristics
includes 0. A two-sample t-test (Schmoldt et al

2000) was also performed to test whether there
was a difference in classification accuracies be-
tween the sugar maple classifier and the black
spruce classifier. The analysis was performed
over six overall accuracy estimates of the sugar
maple and of the black spruce (Table 2). There is
a distinct difference in the overall accuracy be-
tween the two species if the p value of the t-test
is less than 0.05 (�-level).

RESULTS AND DISCUSSION

Selection of the Hidden Node Number and
Image Classification

The box plots representing the four performance
indicators are presented as a function of the
number of hidden nodes in Fig 2, for the sugar
maple classifier, and in Fig 3 for the black
spruce classifier. For the sugar maple classifier,
26 hidden nodes produced good performance in-

Figure 2. Performance indicators for selecting the hidden node number of the sugar maple classifier (each black dot within
a box indicates an average value for a performance indicator produced by the classifier with the corresponding tested
number of hidden nodes): (a) overall accuracy for the testing group and validation set; (b) mean square error for the testing
group and validation set; (c) training iteration number; and (d) training time.
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dicators, although it did not produce the best one
for all indicators (Fig 2). With 26 hidden nodes,
the mean overall accuracies for the testing group
and for the validation set were 98.5 and 89.5%,
respectively. The mean values for MSE were
0.005 and 0.030, respectively. The training time
was 101.5 s, and the training iteration number
was 4011. For the black spruce classifier, 25
hidden nodes usually produced the best perfor-
mance indicators (Fig 3). In this case, the mean
overall accuracies for the testing group and for
the validation set were 96.6 and 92.4%, respec-
tively. The mean values for MSE were 0.010
and 0.023, respectively. The training time was
163.4 s and the training iteration number was
5831. Therefore, 26 and 25 hidden nodes were
used for the sugar maple classifier and the black

spruce classifier, respectively, in the subsequent
analyses. An example of classified CT images is
given in Fig 4b for the sugar maple classifier and
Fig 5b for the black spruce classifier. Both clas-
sified images were then filtered by a 5 × 5 pixels
median filter (Figs 4c and 5c).

Accuracy Analysis

For the training images of the sugar maple log,
the overall accuracy was 98.5%; and class accu-
racies for sapwood, heartwood, inner bark, and
knots were 100, 99.3, 96.7, and 97.9%, respec-
tively. For the validation images, the overall ac-
curacy was 89.5%, and class accuracies were
98.4, 100, 84.6, and 75.2%, respectively. For the

Figure 3. Performance indicators for selecting the hidden node number of the black spruce classifier (each black dot within
a box indicates an average value for a performance indicator produced by the classifier with the corresponding tested
number of hidden nodes): (a) overall accuracy for the testing group and validation set; (b) mean square error for the testing
group and validation set; (c) training iteration number; and (d) training time.
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training images of the black spruce log, the over-
all accuracy was 96.6%; and class accuracies for
sapwood, heartwood, inner bark, and knots were
95.3, 99.7, 98.4, and 93.2%, respectively. For
the validation images of the black spruce log, the
overall accuracy was 92.4%; and class accura-
cies were 80.7, 99.7, 97.6, and 91.8%, respec-
tively. As expected, better classification was
achieved on the training images because the
classifiers were trained using these images. For
the validation images, the classifiers produced
low class accuracy for knots in sugar maple and
sapwood in black spruce. This indicates that the
training vectors may be not sufficient to contain
enough possible variations in log CT images. In
this study, only three CT images of each species
were used to train the classifier. More log CT

images are needed for both training and valida-
tion in future work to develop robust classifiers.
For the validation sets, the amount of false-
positive and false-negative pixels are given in
Table 3. Overall, this study shows that the BP
ANN classifiers are able to identify the consid-
ered internal log characteristics fairly accurately.
The classification accuracy achieved in this
study is as good as that of Schmoldt et al (2000)
(the overall accuracy of 85–95% for oak, yellow
poplar, and black cherry) and Nordmark (2002)
(the overall accuracy of 93–95% for Scots pine).

For the sugar maple log, the ANOVA analysis
produced the p value of less than 0.05 (�-level)
indicating there were significant differences
among the class accuracies. Tukey’s test was

Figure 4. Example of cross-section computed tomography (CT) images for the sugar maple log: (a) raw CT image; (b)
classified image by the sugar maple classifier; and (c) classified image filtered using a 5 × 5 pixels median filter.

Figure 5. Example of cross-section computed tomography (CT) images for the black spruce log: (a) raw CT image; (b)
classified image by the black spruce classifier; and (c) classified image filtered using a 5 × 5 pixels median filter.
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Table 3. The amount of false-positive pixels and false-negative pixels for the validation set.

(a) Sugar maple

Classifier Group (no.)

Amount of false-positive pixels and false-negative pixels

Heartwood Sapwood Inner bark Knots

Aa Ba A B A B A B

Classifier with textural information (trained with
the resilient BP training algorithm)

1 0 0 9 0 24 36 36 33
2 0 3 0 0 39 62 65 39
3 0 1 0 0 30 35 36 30
4 0 4 0 2 32 38 44 32
5 0 14 10 0 33 60 64 33
6 0 5 0 0 27 48 53 27

Average 0 5 3 0 31 47 50 32
Classifier without textural information (trained

with the resilient BP training algorithm)
1 0 8 0 0 53 42 50 53
2 0 12 0 11 76 44 65 74
3 0 0 0 10 74 54 64 74
4 0 5 1 14 71 34 52 71
5 0 13 0 12 96 35 57 93
6 0 5 0 0 74 36 41 74

Average 0 7 0 9 74 41 55 73
Classifier with textural information (trained with

the steepest gradient descent with momentum
algorithms)

1 0 2 0 0 88 46 48 88
2 0 2 0 0 77 56 58 77
3 0 3 0 0 95 37 40 95
4 0 2 0 0 92 45 47 92
5 0 5 0 0 90 49 54 90
6 0 2 0 0 80 45 47 80

Average 0 3 0 0 87 46 49 87

(b) Black spruce

Classifier Group (no.)

Amount of false-positive pixels and false-negative pixels

Heartwood Sapwood Bark Knots

A B A B A B A B

Classifier with textural information (trained
with the resilient BP training algorithm)

1 0 1 46 9 5 10 15 46
2 1 2 43 11 6 8 14 43
3 1 0 41 17 4 8 21 42
4 0 2 36 6 2 10 16 36
5 1 2 39 14 9 9 15 39
6 1 2 27 8 3 10 17 28

Average 1 2 39 11 5 9 16 39
Classifier without textural information (trained

with the resilient BP training algorithm)
1 3 6 36 46 25 47 53 18
2 1 2 43 11 6 8 14 43
3 3 6 64 38 24 46 46 47
4 2 5 47 49 26 44 52 29
5 3 4 29 44 21 45 52 12
6 4 7 48 39 16 46 53 29

Average 3 5 45 38 20 39 45 30
Classifier with textural information (trained

with the steepest gradient descent with
momentum algorithms)

1 0 5 16 23 4 8 33 17
2 0 4 15 16 4 18 30 11
3 0 9 19 19 3 18 38 14
4 0 8 13 21 4 18 40 9
5 1 3 15 18 4 22 34 11
6 0 6 20 19 4 20 36 15

Average 0 6 16 19 4 17 35 13
a A represents the amount of false-negative pixels; B represents the amount of false-positive pixels.
BP, back-propagation.
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then performed (Table 4a). There was a statisti-
cal difference between class accuracies of each
pair of the log characteristics, except for the sap-
wood–heartwood pair. Class accuracies for both
sapwood and heartwood are higher than that for
knots and inner bark in sugar maple (Table 2).
That means sapwood and heartwood of the stud-
ied sugar maple log are easier to identify com-
pared with inner bark and knots. This is mainly
attributable to GL values of the log characteris-
tics that are directly related to their physical
properties, including density and MC. Previous
studies (Lamb and Marden 1970; Einspahr and
Harder 1975; Rojas et al 2005) have shown that
the sapwood in sugar maple generally has a
lower density than knots and heartwood. The GL
value of a characteristic is proportional to its
density. Therefore, sapwood can be separated
easily from knots and the other characteristics
because of its lower GL values. Knots always
have the highest densities resulting in the highest
GL values. As a result of a higher MC, some
parts of the inner bark had higher GL values (Fig
4a) that are almost comparable with those of
knots. When knots are close to these parts of the
inner bark, it becomes difficult to distinguish the
knots from the inner bark because they have
similar GL values and Euclidean distances. As a
result, incorrect classification may happen.
Compared with the inner bark, the heartwood
had lower GL values and Euclidean distances.
This also makes heartwood easy to identify from
the other characteristics.

For the black spruce log, the p value of the
ANOVA was also less than 0.05 (�-level) indi-
cating that there were significant differences
among the class accuracies. Tukey’s test results
show that there was a statistical difference be-
tween class accuracies of each pair of the log
characteristics, except for the heartwood–bark
pair (Table 3b). The class accuracies for heart-
wood and bark were higher than that for sap-
wood (Table 2). All these suggest the heartwood
and the bark of the studied black spruce log are
easier to identify as compared with sapwood.
According to Panshin and Zeeuw (1971), the
heartwood of a black spruce log generally has
lower density than knots, sapwood, and bark.
Moreover, average MC of heartwood and sap-
wood in black spruce (green wood) is estimated
to be approximately 52 and 113%, respectively
(Forest Products Laboratory 1999). These cause
the darkness of the heartwood in CT images (Fig
5a), therefore making the heartwood easily sepa-
rable from the other characteristics. Bark is lo-
cated far from the pith as compared with sap-
wood and heartwood. That means that the bark
pixels have higher Euclidean distances. There-
fore, the bark is also separated easily from the
other characteristics. Although the sapwood was
rather easily separated from other characteristics
of the sugar maple log, this log characteristic
was difficult to distinguish from the other char-
acteristics in the black spruce log. Carefully
checking of the sapwood pixels in the black
spruce CT images shows a distinct variation in

Table 4. Confidence interval for the difference between the class accuracies of each pair of the log characteristics as
estimated by a Tukey’s test.

(a) Sugar maple

Heartwood Sapwood Inner bark Knots

Heartwood —
Sapwood −0.044, 0.076 —
Inner bark −0.214, −0.094 −0.199, −0.078 —
Knots −0.309, −0.188 −0.293, −0.172 −0.154, −0.034 —

(b) Black spruce

Heartwood Sapwood Bark Knots

Heartwood —
Sapwood 0.160, 0.221 —
Bark −0.051, 0.010 0.139, 0.200 —
Knots −0.109, −0.048 0.081, 0.142 −0.088, −0.027 —
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GL values throughout the sapwood (some sap-
wood pixels were very dark compared with oth-
ers). This variation, which may be related to the
MC influence, causes a high class spectral vari-
ability and thus a low class accuracy for the
sapwood.

For the t-test comparing classification accuracies
of both classifiers, the p value of the t-test was
0.02. It was less than 0.05 (�-level), indicating
that there was a difference in the classification
accuracy between the two classifiers. This sug-
gests that each BP ANN developed in this study
provides a different performance for the related
species. Higher overall accuracy (92.4% for the
validation images) was achieved with the black
spruce classifier compared with the sugar maple
classifier (89.5%). This was mainly caused by
the low class accuracy of the knots’ region
(75.2%) in the validation images of the sugar
maple log.

Other Comparisons

Comparison between back-propagation artifi-
cial neural networks with and without textural
information. In this study, for each species, a
corresponding BP ANN classifier without tex-
tural information was also developed using the
same three training images and validated with
the same two validation images. They are refer-
enced thereafter as sugar maple classifier with-
out textures and black spruce classifier without
textures, respectively. Comparing with BP ANN
classifiers with textural information (ie sugar
maple classifier and black spruce classifier), the
inputs for the BP ANN classifiers without tex-
tural information did not include the seven tex-
tural features (Table 1). For the training images
of the sugar maple log, sugar maple classifier
without textures produced an overall accuracy of
93.4%, which is less than the overall accuracy of
98.5% produced by sugar maple classifier. Class
accuracies for sapwood, heartwood, inner bark,
and knots were 98.7, 99.6, 86.3, and 88.6%, re-
spectively. For the validation images, the overall
accuracy was 83.9%, which is also less than the
overall accuracy of 89.5% produced by sugar

maple classifier; class accuracies were 99.8,
100, 63.0, and 72.6%, respectively. For the train-
ing images of the black spruce log, black spruce
classifier without textures produced the overall
accuracy of 93.4%, which is less than the overall
accuracy of 96.6% produced by black spruce
classifier. Class accuracies for sapwood, heart-
wood, bark, and knots were 94.2, 98.7, 93.7, and
88.0%, respectively. For the validation images,
the overall accuracy was 86.0%, which is also
less than the overall accuracy of 92.4% pro-
duced by black spruce classifier; class accura-
cies were 77.8, 98.7, 90.2, and 77.5%, respec-
tively. The amounts of false-positive pixels and
negative pixels are given in Table 4. Taking
classification on both sugar maple images and
black spruce images into consideration, the re-
sults suggest that the classification performance
of BP ANNs with textural information is better
than that of BP ANNs without textural informa-
tion.

Comparison between the resilient back-
propagation training algorithm and the steep-
est gradient descent with momentum training
algorithm. For each species, a corresponding BP
ANN classifier trained with the traditional train-
ing algorithm, ie the steepest gradient descent
with momentum algorithm, was also developed
and validated using the same five images. They
are referenced thereafter as sugar maple classi-
fier with traditional algorithm and black spruce
classifier with traditional algorithm, respec-
tively. As shown in Table 5, the resilient BP
training algorithm made BP ANN classifiers
converge faster compared with the steepest gra-
dient descent with momentum algorithm indicat-
ing the superiority of the resilient BP training
algorithm. For the training images of the sugar
maple log, sugar maple classifier with traditional
algorithm produced the overall accuracy of
94.8%, which is less than the overall accuracy of
98.5% produced by sugar maple classifier. Class
accuracies for sapwood, heartwood, inner bark,
and knots were 99.2, 99.6, 84.9, and 95.5%, re-
spectively. For the validation images, the overall
accuracy was 83.0%, which is also less than the
overall accuracy of 89.5% produced by sugar
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maple classifier; class accuracies were 100, 100,
56.5, and 75.5%, respectively. For the training
images of the black spruce log, black spruce
classifier with traditional algorithm produced the
overall accuracy of 95.2%, which is less than the
overall accuracy of 96.6% produced by black
spruce classifier. Class accuracies for sapwood,
heartwood, bark, and knots were 95.4, 100, 97.4,
and 88.2%, respectively. For the validation im-
ages, the overall accuracy was 93.1%, which is
greater than the overall accuracy of 92.4% pro-
duced by black spruce classifier; class accura-
cies were 91.8, 99.9, 98.4, and 82.4%, respec-
tively. The amount of false-positive pixels and
negative pixels are listed in Table 4.

CONCLUSIONS

This study mainly focused on developing two
feed-forward BP ANN classifiers with a resilient
BP training algorithm to identify four internal
log characteristics in sugar maple and black
spruce, respectively. GL values, textural, and
distance features were selected as input features
for each classifier. The optimum number of hid-
den nodes was 26 for the sugar maple classifier
and 25 for the black spruce classifier. Both clas-
sifiers produced fairly accurate classification for
the corresponding species. Statistical analyses

show that higher classification accuracy was
achieved with the black spruce classifier. The
proposed feed-forward BP ANN classifiers (us-
ing the selected input features) may be feasible
to identify log characteristics in sugar maple CT
images and black spruce CT images, respec-
tively. The results also suggest that the classifi-
cation performance of BP ANNs with textural
information is better than that of BP ANNs with-
out textural information; the resilient BP training
algorithm made BP ANN classifiers converge
faster compared with the steepest gradient de-
scent with momentum algorithm. One drawback
of BP ANNs is that the presented procedure of
choosing the hidden node number is time-
consuming. The classifiers were developed on a
single log for each species. There is the need to
test the classifiers with a high number of sugar
maple and black spruce logs. Moreover, the clas-
sified images were only filtered by a median
filter. A more advanced post-classification pro-
cedure (eg merging classified pixels to 3-D logs)
should be developed in future work to improve
classification accuracy.
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