99 research outputs found

    First principle study of intrinsic defects in hexagonal tungsten carbide

    Full text link
    The characteristics of intrinsic defects are important for the understanding of self-diffusion processes, mechanical strength, brittleness, and plasticity of tungsten carbide, which present in the divertor of fusion reactors. Here, we use first-principles calculations to investigate the stability of point defects and their complexes in WC. Our calculation results confirm that the formation energies of carbon defects are much lower than that of tungsten defects. The outward relaxations around vacancy are found. Both interstitial carbon and interstitial tungsten atom prefer to occupy the carbon basal plane projection of octahedral interstitial site. The results of isolated carbon defect diffusion show that the carbon vacancy stay for a wide range of temperature because of extremely high diffusion barriers, while carbon interstitial migration is activated at lower temperatures for its considerable lower activation energy. These results provide evidence for the presumption that the 800K stage is attributed by the annealing out of carbon vacancies by long-range migration.Comment: Submitted to Journal of Nuclear Material

    Quantization of adiabatic pumped charge in the presence of superconducting lead

    Get PDF
    We investigate the parametric electron pumping of a double barrier structure in the presence of a superconducting lead. The parametric pumping is facilitated by cyclic variation of the barrier heights x1x_1 and x2x_2 of the barriers. In the weak coupling regime, there exists a resonance line in the parameter space (x1,x2)(x_1,x_2) so that the energy of the quasi-bound state is in line with the incoming Fermi energy. Levinson et al found recently that the pumped charge for each pumping cycle is quantized with Q=2eQ=2e for normal structure when the pumping contour encircles the resonance line. In the presence of a superconducting lead, we find that the pumped charge is quantized with the value 2e2e

    Optimal quantum pump in the presence of a superconducting lead

    Get PDF
    We investigate the parametric pumping of a hybrid structure consisting of a normal quantum dot, a normal lead and a superconducting lead. Using the time dependent scattering matrix theory, we have derived a general expression for the pumped electric current and heat current. We have also derived the relationship among the instantaneous pumped heat current, electric current, and shot noise. This gives a lower bound for the pumped heat current in the hybrid system similar to that of the normal case obtained by Avron et al

    Silicon 1s Near Edge X-ray Absorption Fine Structure Spectroscopy of Functionalized Silicon Nanocrystals

    Get PDF
    NSERCPeer ReviewedSilicon 1s Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of silicon nanocrystals have been examined as a function of nanocrystal size (3 – 100 nm), varying surface functionalization (hydrogen or 1-pentyl termination), or embedded in oxide. The NEXAFS spectra are characterized as a function of nanocrystal size and surface functionalization. Clear spectroscopic evidence for long range order is observed Si-NCs that are 5-8 nm in diameter or larger. Energy shifts in the silicon 1s NEXAFS spectra of covalently functionalized silicon nanocrystals with changing size are attributed to surface chemical shifts and not to quantum confinement effects

    Parametric quantum spin pump

    Get PDF
    We investigate a non-adiabatic parametric quantum pump consists of a nonmagnetic scattering region connected by two ferromagnetic leads. The presence of ferromagnetic leads allows electrons with different spins to experience different potential landscape. Using this effect we propose a quantum spin pump that drives spin-up electrons to flow in one direction and spin-down electrons to flow in opposite direction. As a result, the spin pump can deliver a spin current with vanishing charge current

    Non-adiabatic charge pump: an exact solution

    Get PDF
    We derived a general and exact expression of current for quantum parametric charge pumps in the non-adiabatic regime at finite pumping frequency and finite driving amplitude. The non-perturbative theory predicts a remarkable plateau structure in the pumped current due to multi-photon assisted processes in a double-barrier quantum well pump involving only a {\it single} pumping potential. It also predicts a current reversal as the resonant level of the pump crosses the Fermi energy of the leads

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb−1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb−1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+e−e^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
    • …
    corecore